Помощь в написании студенческих работ
Антистрессовый сервис

Обзор статистических методов управления качеством

РефератПомощь в написанииУзнать стоимостьмоей работы

Диаграмма связей реализуется в виде древовидной схемы, на которой изображены слова, идеи, задачи или другие понятия, связанные ветвями, отходящими от центрального понятия или идеи. В основе этой техники лежит принцип «радиантного мышления», относящийся к ассоциативным мыслительным процессам, отправной точкой или точкой приложения которых является центральный объект. Это показывает бесконечное… Читать ещё >

Обзор статистических методов управления качеством (реферат, курсовая, диплом, контрольная)

В комплексной системе управления качеством продукции статистические методы контроля относятся к наиболее прогрессивным. Они основаны на применении методов математической статистики к систематическому контролю за качеством изделий и состоянием технологического процесса с целью поддержания его устойчивости и обеспечения заданного уровня качества выпускаемой продукции.

Статистические методы контроля производства и качества продукции имеют ряд преимуществ перед другими методами:

  • 1) являются профилактическими;
  • 2) позволяют во многих случаях обоснованно перейти к выборочному контролю и тем самым снизить трудоемкость контрольных операций;
  • 3) создают условия для наглядного изображения динамики изменения качества продукции и настроенности процесса производства, что позволяет своевременно принимать меры к предупреждению брака не только контролерам, но и работникам цеха — рабочим, бригадирам, технологам, наладчикам, мастерам.

Статистические методы управления качеством продукции предполагают:

  • 1) анализ технологического процесса с целью приведения его к требуемой настроенности, точности и статистически устойчивому состоянию;
  • 2) текущий контроль с целью регулирования и поддержания процесса в состоянии, обеспечивающем заданные качественные параметры;
  • 3) выборочный статистический приемочный контроль качества готовой продукции.
  • 1. Метод мозгового штурма (мозговой штурм, мозговая атака, англ. brainstorming) — оперативный метод решения проблемы на основе стимулирования творческой активности, при котором участникам обсуждения предлагают высказывать возможно большее количество вариантов решения, в том числе самых фантастических. Затем из общего числа высказанных идей отбирают наиболее удачные, которые могут быть использованы на практике. Является методом экспертного оценивания.

Правильно организованный мозговой штурм включает три обязательных этапа. Этапы отличаются организацией и правилами их проведения:

  • · Постановка проблемы. Предварительный этап. В начале этапа проблема должна быть четко сформулирована. Происходит отбор участников штурма, определение ведущего и распределение прочих ролей участников в зависимости от поставленной проблемы и выбранного способа проведения штурма.
  • · Генерация идей. Основной этап, от которого во многом зависит успех (см. ниже) всего мозгового штурма. Поэтому очень важно соблюдать правила для этого этапа:
  • · Группировка, отбор и оценка идей. Этот этап часто забывают, но именно он позволяет выделить наиболее ценные идеи и дать окончательный результат мозгового штурма. На этом этапе, в отличие от второго, оценка не ограничивается, а наоборот, приветствуется. Методы анализа и оценки идей могут быть очень разными. Успешность этого этапа напрямую зависит от того, насколько «одинаково» участники понимают критерии отбора и оценки идей.
  • 2. Диаграмма сродства (метод KJ) — инструмент, позволяющий выявлять основные нарушения процесса путем объединения сродственных устных данных. Входит в состав инструмента «Семь (новых) инструментов управления качеством».

Первую версию разработал Дзиро Кавакита (Япония), в честь которого она получила название «метод Кей Джи» Масленникова Т. Формирование информационных технологий управления экономикой //Проблемы теории и практики управления, 2004, № 6, с. 90 — 95; Методы и модели управления фирмой на основе современного менеджмента /под ред. Б. Кузина и В. Юрьева. СПб: Питер, 2001. — С.159.

Цель — решение задач по систематизации и упорядочению идей, потребительских требований или мнений членов групп, принимающих участие в обсуждении.

Суть метода — работа не с конкретными числовыми данными, а со словесными высказываниями. Диаграмма сродства вносит ясность в важные, но нерешенные проблемы, собирая бессистемно устные данные из разных мест и затем анализируя эти данные по принципу их взаимного сродства (близости).

3. Диаграмма связей, известная также как интеллект-карта, (англ. Mind map) — способ изображения процесса общего системного мышления с помощью схем. Также может рассматриваться как удобная техника альтернативной записи.

Диаграмма связей реализуется в виде древовидной схемы, на которой изображены слова, идеи, задачи или другие понятия, связанные ветвями, отходящими от центрального понятия или идеи. В основе этой техники лежит принцип «радиантного мышления», относящийся к ассоциативным мыслительным процессам, отправной точкой или точкой приложения которых является центральный объект. Это показывает бесконечное разнообразие возможных ассоциаций и следовательно, неисчерпаемость возможностей мозга. Подобный способ записи позволяет диаграмме связей неограниченно расти и дополняться. Диаграммы связей используются для создания, визуализации, структуризации и классификации идей, а также как средство для обучения, организации, решения задач, принятия решений, при написании статей.

Иногда в русских переводах термин может переводиться как «карты ума», «карты разума», «интеллект-карты», «карты памяти» или «ментальные карты».

  • 4. Древовидные диаграммы. Как и другие типы дедуктивных рассуждений, условные умозаключения могут быть представлены в виде пространственного ряда. Древовидные диаграммы, т. е. схемы, на которых основная информация представлена в виде «ветвей», напоминающих ветви дерева, используются в нескольких главах этой книги, в том числе и для определения валидности заключения в задачах, требующих дедуктивных рассуждений типа «если… то…». Древовидные диаграммы являются очень удобной формой представления информации во многих ситуациях
  • 5. Матричная диаграмма (таблица качества; матрица связей, матричное представление данных) — инструмент, позволяющий выявлять важность различных неочевидных (скрытых) связей, т. е. исследовать структуру проблемы. Обычно используются двумерные матрицы в виде таблиц со строками и столбцами. Входит в состав инструмента «Семь (новых) инструментов управления качеством».

Цель — обеспечить систематический поиск взаимосвязей между элементами в рамках данной проблемы с выделением их относительной важности.

Суть метода — упорядоченное представление данных по строкам и столбцам, отражающих логические связи между различными элементами.

Матричная диаграмма вносит ясность в благодаря многомерному представлению и выявляет элементы, связанные с проблемной ситуацией. Символ на пересечении строки и столбца указывает на наличие связи между соответствующими элементами и ее относительную важность.

6. Стрелочная диаграмма (сетевой график; метод ПЕРТ; метод критического пути) — инструмент, позволяющий планировать оптимальные сроки выполнения всех необходимых работ для реализации поставленной цели и эффективно их контролировать. Входит в состав инструмента «Семь (новых) инструментов управления качеством».

По сути, это хорошо известный метод сетевого планирования, использующий для отображения и алгоритмизации тех или иных действий или ситуаций сетевые модели, простейшие из них — сетевые графики. Кроме этого известного метода, в тех же целях используются еще и так называемые диаграммы Гантта.

Стрелочная диаграмма применяется после того, как выявлены проблемы, требующие своего решения, и определены необходимые меры, сроки и этапы их осуществления.

Цель — сокращение до минимума продолжительности проекта.

Стрелочная диаграмма графически, наглядно и системно отображает и оптимизирует последовательность и взаимозависимость работ, действий или мероприятий, обеспечивающих своевременное и планомерное достижение конечных целей.

  • 7. Поточная диаграмма процесса — разновидность предыдущего метода, также называемая блок-схемой.
  • 8. Матрица приоритетов. Другие названия метода: «Анализ матричных данных», «Метод матричного анализа данных».

Применяется для анализа числовых данных матричных диаграмм, когда возникает необходимость представить их в более наглядном виде. Японский союз ученых и инженеров в 1979 г. включил матрицу приоритетов в состав семи методов управления качеством.

Цель метода — выявление из большого количества числовых данных, полученных при построении матричных диаграмм (таблиц качества), наиболее важных для решения рассматриваемой проблемы.

Матрица приоритетов видоизменяет и располагает данные матричной диаграммы так, чтобы информация была удобна для наглядного представления и понимания.

Матрица приоритетов обеспечивает промежуточное планирование, способствует выявлению силы связи между переменными, которые были статистически определены, и помогает графически проиллюстрировать эти связи.

План действий:

  • · Перегруппировать информацию, представленную в матричной диаграмме, таким образом, чтобы подчеркнуть силу корреляционной связи между переменными.
  • · На основании анализа полученной матрицы корреляции выявить приоритетные компоненты.
  • · Построить матрицу для приоритетных компонентов данных и проанализировать вошедшие в нее данные.

Метод матричного анализа, позволяющий в процессе обработки большого количества числовых данных выявлять приоритетные, эквивалентен статистическому методу, известному как анализ важнейших компонент (principal component analysis), который является одним из основных методов многокомпонентного анализа Ваймерскирх С. Дж. А. Всеобщее управление качеством. М.: 2002 — С. 108.

Матрица приоритетов позволяет:

  • · анализировать процессы производства, тесно связанные между собой;
  • · анализировать причины несоответствий, которые связаны с большим объемом данных;
  • · по результатам рыночных обследований выявлять требуемый уровень качества;
  • · постоянно определять характеристики, способные изменяться под влиянием каких-либо условий.
  • · выполнять комплексные оценки качества;
  • · анализировать нелинейные данные.

Результаты анализа статистических данных могут быть представлены графически в виде схемы предпочтений в зависимости от важнейших компонент данных, отложенных соответственно на осях абсцисс и ординат.

Многие из современных статистических методов довольно сложны для восприятия, а тем более для широкого применения всеми участниками процесса. Японские ученые отобрали из всего множества семь методов. Их заслуга, и в первую очередь, профессора Исикавы, состоит в том, что они обеспечили простоту, наглядность, визуализацию этих методов, превратив их фактически в эффективные инструменты контроля качества (рис. 1). Их можно понять и эффективно использовать без специальной математической подготовки.

Семь инструментов контроля качества.

Рис. 1. Семь инструментов контроля качества

При всей своей простоте эти методы позволяют сохранить связь со статистикой и дают возможность профессионалам пользоваться результатами этих методов и при необходимости совершенствовать их. Как видно из рис. 1, к семи инструментам контроля качества относятся следующие статистические методы:

контрольный листок;

гистограмма;

диаграмма разброса;

диаграмма Парето;

стратификация (расслоение);

диаграмма Исикавы (причинно-следственная диаграмма);

контрольная карта.

Эти методы можно рассматривать и как отдельные инструменты, и как систему методов (разную в различных обстоятельствах).

Последовательность применения семи методов может быть различной в зависимости от цели, которая поставлена перед системой. Точно также применяемая система не обязательно должна включать все семь методов Их может быть меньше, а может быть и больше, ибо существуют и другие статистические методы, например, методы оценки качества. Однако можно с полной уверенностью сказать, что семь инструментов контроля качества являются необходимыми и достаточными статистическими методами, применение которых, по мнению Исикавы, помогает решить 95% всех проблем, возникающих на производстве Зуб А. Т. Современный менеджмент. М.: Аспект Пресс, 2002 — С.140; Конев И. Системная стратегия организационных изменений в развивающейся корпорации //Проблемы теории и практики управления, 2005, № 3, с. 90.

Внедрение семи инструментов контроля качества должно начинаться с обучения этим методам всех участников процесса. Успешному внедрению семи инструментов контроля качества в Японии способствовало отношение руководителей компании к процессу обучения. Они ставили и продолжают ставить перед собой цель сделать каждого рабочего инженером, а инженеров, не знакомых со статистическими методами, не считать полноценными специалистами. Большую роль в обучении статистическим методам в Японии сыграли кружки контроля качества, в которых прошли обучение рабочие и инженеры большинства японских компаний.

Обучаются не только инженеры и рабочие, но и бизнесмены. По высказыванию Деминга, «японский бизнесмен никогда не считает себя слишком старым, чтобы учиться или быть невосприимчивым к знаниям».

Статистическое мышление необходимо для каждого участника процесса, а для этого необходимо знать статистические методы, которые за счет своей простоты, достигнутой в семи инструментах контроля качества, доступны для всех. Каждый служащий компании или организации, используя статистические методы для анализа и контроля процессов, тем самым способствует повышению качества, эффективности производства и снижению затрат.

Статистические методы — это то средство, которое необходимо изучать, чтобы внедрить управление качеством. Они — наиболее важная составляющая комплексной системы контроля Всеобщего Управления Качеством.

Говоря о семи простых статистических методах контроля качества, следует подчеркнуть, что это инструменты познания, а не инструменты управления.

Основное их назначение — контроль протекающего процесса и предоставление участнику процесса фактов для корректировки и улучшения процесса. Знание и применение на практике семи инструментов контроля качества лежат в основе одного из важнейших требований TQM — постоянного самоконтроля.

Статистические методы контроля качества в настоящее время применяются не только в производстве, но и в планировании, проектировании, маркетинге, материально-техническом снабжении и т. д.

Вне всякого сомнения, статистические методы служат мощным средством не только получения объективной информации, но и познания, в том числе реальных естественных законов. Если естественные науки ограничиваются только пониманием законов, то с помощью статистических методов делается попытка применить эти законы для создания новых материальных ценностей для потребителя наиболее экономичным путем.

В управлении качеством статистический контроль должен дополняться применением знаний естественных законов не только для понимания объектов исследования, но и для выработки мероприятий по повышению качества. Таким образом, статистические методы контроля имеют обширный фронт применения.

Применение статистических методов — весьма действенный путь разработки новых технологий и контроля качества процессов. Многие ведущие фирмы стремятся к их активному использованию, а некоторые из них тратят более ста часов ежегодно на обучение этим методам своих сотрудников, осуществляемое в рамках самой фирмы. Хотя знание статистических методов — часть нормального образования инженера, само знание еще не означает умения применить его. Способность рассматривать события с точки зрения статистики важнее, чем знание самих методов.

Для наглядного представления тенденции изменения наблюдаемых значений применяют графическое изображение статистического материала. Наиболее распространенными графиками, к которым прибегают при анализе распределения случайной величины, являются полигон, гистограмма и кумулятивная кривая. Однако когда говорят о втором инструменте контроля качества, то упоминают только гистограмму, как наиболее часто применяемое на практике графическое изображение распределения.

Гистограмма — это инструмент, позволяющий зрительно оценить закон распределения статистических данных.

Рассмотрим все три упомянутых графических представления данных, с тем чтобы читатель смог оценить достоинства каждого из них и при необходимости применить на практике.

Полигоны, как правило, применяют для отображения дискретных изменений значений случайной величины, но они могут использоваться и при непрерывных (интервальных) изменениях. В этом случае ординаты, пропорциональные частотам интервалов, восстанавливаются перпендикулярно оси абсцисс в точках, соответствующих серединам данных интервалов. Вершины ординат соединяются прямыми линиями. Для замыкания кривой крайние ординаты соединяются с близлежащей серединой интервала, в которой частота равна нулю. Пример изображения значений пробивного напряжения в виде полигона, приведен на рис. 2.

Обзор статистических методов управления качеством.

Гистограмма распределения обычно строится для интервального изменения значения параметра. Для этого на интервалах, отложенных на оси абсцисс, строят прямоугольники (столбики), высоты которых пропорциональны частотам интервалов. Гистограмма интервального ряда изображена на рис. 3, где по оси ординат отложены абсолютные значения частот. Аналогичную форму гистограммы можно получить, если по оси ординат на рис. 3 отложить соответствующие значения относительных частот. Если на рис. 3 ширину класса (2,9) принять за единицу шкалы по оси абсцисс, то, например, для класса 176,5…179,4 В его высота 0,6 будет одновременно и площадью столбика, изображающего этот класс. При этом сумма площадей всех столбиков будет равна единице, что оказывается удобно.

Полигон частот по результатам 160 измерений пробивного напряжения.

Рис. 2. Полигон частот по результатам 160 измерений пробивного напряжения

Гистограмма частот интервального ряда распределения.

Рис. 3. Гистограмма частот интервального ряда распределения

Если на рис. 3 кроме гистограммы нанести еще и полигон, то по мере роста числа измерений одновременно уменьшается ширина класса, и полигон превращается в так называемую кривую плотности вероятностей, представляющую собой кривую теоретического распределения (штриховая линия на рис.3). Заметим, что площадь, ограниченная полигоном и осью абсцисс, в том случае, если по оси ординат отложены значения относительных частот, также равна единице. Как видно из рис. 3, кривая теоретических распределений имеет идеальную форму, к которой стремится реальный полигон, и она играет важную роль в теоретических исследованиях. Кстати, кривая похожа на кривую нормального распределения.

Для выяснения того, соответствует ли данное распределение результатов измерения нормальному распределению, иногда используют специальную вероятностную бумагу, называемую нормальной вероятностной бумагой. Представление данных на такой бумаге осуществляется следующим способом.

На основе полученных в результате измерения параметров качества значений абсолютных частот или соответствующих частостей подсчитывают накопленные частоты (частости). Накопленная частота (частость) каждого значения параметра качества получается суммированием всех частот (частостей), предшествующих значениям параметра. Вумек Дж.П., Джонс Д. Т. Бережливое обеспечение. СПб.: 2006 — С.186−187.

График накопленных частот представляет собой кумулятивную кривую (кумуляту). Часто ее называют интегральной кривой. Кумулятивная кривая строится как для дискретного, так и для непрерывного изменения значений параметра. При этом следует отметить, что накопленные частоты (частости) интервального ряда относятся не к серединам интервалов, а к верхним границам каждого из них. Высота последней ординаты соответствует объему наблюдений всего ряда, или 100%. Зависимость на рис. 4 представляет собой полигон, построенный на основе таблиц накопленных частот, и носит название накопленного полигона, а ломаная кривая (штриховая линия) представляет собой кумулятивную кривую. Кумулятивная кривая имеет более плавный характер изменения, чем гистограмма или полигон частот, ибо накопление приводит к сглаживанию. Значения накопленных частот, соответствующих одно-, двухи трехкратному стандартному отклонению значения параметра качества от среднего значения исследуемого статического ряда, наносят на нормальную вероятностную бумагу.

В результате имеют на ней шесть точек: три точки, соответствующие большему значению параметра качества относительно его среднего значения, и три точки, соответствующие меньшему его значению (рис. 5). Если точки хорошо ложатся на прямую, то можно говорить о соответствии статистических данных нормальному распределению.

В данном примере точки не легли точно на прямую, но оказались довольно близко к ней. Поэтому можно сделать вывод о том, что результаты измерения имеют распределение, близкое к нормальному. Хотя распределение данных и близко к нормальному, точки на рис. 5 в начале и в конце заметно отклоняются от прямой, что, в общем-то бывает часто.

Из рассмотренных графических изображений становится понятным преимущество гистограммы при визуальной оценке закона распределения случайной величины. Однако не только в этом преимущество гистограммы, которая признана инструментом контроля качества.

Кумулятивная кривая.

Рис. 4. Кумулятивная кривая

Расположение экспериментальных точек на нормальной вероятностной бумаге.

Рис. 5. Расположение экспериментальных точек на нормальной вероятностной бумаге

Гистограмма также очень удобна для визуальной оценки расположения статистических данных в пределах допуска. Чтобы оценить адекватность процесса требованиям потребителя, мы должны сравнить качество процесса с полем допуска, установленным пользователем. Если имеется допуск, то на гистограмму наносят верхнюю () и нижнюю () его границы в виде линий, перпендикулярных оси абсцисс, чтобы сравнить распределение параметра качества процесса с этими границами. Тогда можно увидеть, хорошо ли располагается гистограмма внутри этих границ. Так, на рис. 6 приведена гистограмма значений коэффициентов усиления 120 проверенных усилителей. В технических условиях (ТУ) на эти усилители указано номинальное значение коэффициента усиления на этот тип усилителей, равный 10 дБ. Номинальное значение представляет собой математическое ожидание, т. е. среднее значение коэффициента усиления для данного типа усилителя при его производстве, которое можно рассматривать как генеральную характеристику, а совокупность всех значений коэффициентов усилений выпускаемых усилителей — генеральную совокупность. В ТУ установлены также допустимые пределы изменения коэффициента усиления: нижняя граница допуска соответствует 7,75 дБ, а верхняя =12,25 дБ. При этом ширина поля допуска T определяется как величина, равная разности значений верхней и нижней границ допуска, т. е. Если бы расположить все 120 значений коэффициентов усиления в ранжированный ряд, то можно было бы убедиться, что все они лежат в пределах поля допуска, что создает иллюзию отсутствия проблем и, следовательно, отсутствия необходимости дальнейшего анализа, так как качество процесса в этом случае лежит в пределах поля допуска, установленного потребителем. В отличие от этого гистограмма сразу показывает, что распределение коэффициентов усиления хотя и находится в пределах поля допуска, но значительно сдвинуто в сторону нижней границы и у большинства усилителей значение этого параметра качества меньше номинала. Это, в свою очередь, дает дополнительную информацию для дальнейшего анализа и принятия решения.

Гистограмма значений коэффициентов усиления усилителей.

Рис. 6. Гистограмма значений коэффициентов усиления усилителей

Если гистограмма имеет симметричный (колоколообразный) вид, то можно предполагать гауссовский закон распределения случайной величины. В этом случае среднее значение гистограммы приходится на середину размаха данных. Наивысшая частота оказывается в середине и постепенно снижается в обе стороны. Эта форма встречается чаще всего, в связи, с чем такой тип гистограмм называют обычным.

Когда выяснено, что гистограмма следует гауссовскому (нормальному) закону распределения, становится возможным исследование воспроизводимости процесса, т. е. определяется неизменность основных параметров процесса: среднего значения или математического ожидания М (х) и стандартного отклонения во времени. Оно важно при оценке процесса с помощью выборочных данных, когда требуется выяснить вероятность пересечения распределения генеральной совокупности границ поля допуска и появления в связи с этим несоответствия требованиям потребителя (пользователя). Если процесс имеет нормальное распределение, то не представляет труда определить возможность выхода распределения генеральной совокупности при заданных значениях М (х) и исхода из сравнения соответствующих трехсигмовых пределов и пределов поля допуска. Однако при этом необходимо учитывать следующую особенность. Из рис. 7 видно, что если брать в качестве границ допуска трехсигмовые пределы, то годными будут считаться 99,73% всех данных генеральной совокупности и только 0,27% данных будут считаться несоответствующими требованиям потребителя (пользователя), так как они расположены за границами заданного поля допуска. Таким образом, часть годных данных (0,27%) считают несоответствующими требованиям, и в этом состоит особенность трехсигмовых пределов, которые применяют на практике, сравнивая распределение данных с устанавливаемыми границами допуска. Вумек Дж.П., Джонс Д. Т. Бережливое обеспечение. СПб.: 2006 — С. 195.

К понятию годности при выборе трехсигмовых пределов.

Рис. 7. К понятию годности при выборе трехсигмовых пределов

С учетом сказанного предполагаемые годные (соответствующие трехсигмовым пределам) данные будем обозначать через С и их количество будет определяться трехсигмовыми пределами, т. е. и, учитывая, что = 1, С = 6. Для количественной оценки того, сколько из предполагаемых годных данных вошло в поле допуска, используют так называемый коэффициент годности :

Обзор статистических методов управления качеством.
Обзор статистических методов управления качеством.

Следует заметить, что коэффициент годности, представленный в данной формуле, является частным случаем коэффициента точности, который применяется при анализе воспроизводимости процесса по критериям точности и стабильности и который при сохранении тех же, что и в формуле обозначений, имеет следующий вид:

Обзор статистических методов управления качеством.

.

где — коэффициент, зависящий от типа распределения исследуемых данных (для гауссовского закона распределения =6, для закона равной вероятности =3,464 и т. д.).

Обзор статистических методов управления качеством.
Обзор статистических методов управления качеством.

В подавляющей части зарубежной литературы последнее отношение принято называть отношением или индексом годности. Исследование воспроизводимости процесса с помощью позволяет оценить качество процесса в соответствии с требованиями потребителя. Чем больше величина, тем выше качество процесса и тем меньше вероятность несоответствия его выхода ожиданиям потребителя. Для оценки вклада в протекание процесса систематических изменений применяют еще один индекс годности, который называют коэффициентом смещения (К), с помощью которого можно оценить изменение среднего значения распределения от его значения, заданного потребителем (рис. 8).

Гауссовское распределение погрешностей параметров качества процесса при различных значениях коэффициентов смещения.

Рис. 8. Гауссовское распределение погрешностей параметров качества процесса при различных значениях коэффициентов смещения: относительное количество несоответствующих требованиям изделий, параметры качества которых выходят за границы поля допуска Т

Коэффициент смещения подсчитывается по следующей формуле:

Обзор статистических методов управления качеством.

где — абсолютное смещение среднего значения контролируемого параметра от начала координат (см. рис. 8).

Чем меньше К, тем меньше вклад систематических изменений в ходе процесса.

Обзор статистических методов управления качеством.
Обзор статистических методов управления качеством.

Часто на практике для оценки смещения среднего значения применяют индекс годности, когда в знаменателе вместо Т используют С, а в числителе вместо подставляют наименьшее значение разности между средним значением и границей допуска. Это может быть либо (), либо ():

Обзор статистических методов управления качеством.
Обзор статистических методов управления качеством.
Обзор статистических методов управления качеством.

Когда не смещено от центра поля допуска, т. е., то значение не подсчитывается, а изменчивость процесса в этом случае определяется только изменчивостью стандартного отклонения. Различные значения индексов годности в зависимости от вида гауссовского распределения приведены на рис. 9.

Как видно из рис. 9, для оперативной количественной оценки того, насколько хорошо процесс отвечает предъявляемым требованиям, достаточно применения индекса годности. Существует следующее правило:

— процесс в удовлетворительном состоянии;

— процесс отвечает предъявляемым к нему требованиям;

Обзор статистических методов управления качеством.

— процесс не отвечает предъявляемым требованиям.

Рис. 9. Значения индексов годности в зависимости от параметров и s гауссовского распределения

Показать весь текст
Заполнить форму текущей работой