Основные понятия и методы экономико-математического моделирования
Познание количественных отношений экономических процессов и явлений опирается на экономические измерения. Точность измерений в значительной степени предопределяет и точность конечных результатов количественного анализа посредством моделирования. Поэтому необходимым условием эффектного использования математического моделирования является совершенствование экономических измерителей. Применение… Читать ещё >
Основные понятия и методы экономико-математического моделирования (реферат, курсовая, диплом, контрольная)
ТЕМА:
Основные понятия и методы экономико-математического моделирования
ГЛАВА 1. Основные понятия и определения
1.1 Основные понятия и определения
Понятие и типы моделей. Моделирование
В процессе исследования объекта часто бывает нецелесообразно или даже невозможно иметь дело непосредственно с этим объектом. Удобнее бывает заменить его другим объектом, подобным данному в тех аспектах, которые важны в данном исследовании. В общем виде модель можно определить как условный образ (упрощенное изображение) реального объекта (процесса), который создается для более глубокого изучения действительности. Метод исследования, базирующийся на разработке и использовании моделей, называется моделированием. Например, модель самолета продувают в аэродинамической трубе, вместо того, чтобы испытывать настоящий самолет — это дешевле. При теоретическом исследовании атомного ядра физики представляют его в виде капли жидкости, имеющей поверхностное натяжение, вязкость и т. п. Необходимость моделирования обусловлена сложностью, а порой и невозможностью прямого изучения реального объекта (процесса). Значительно доступнее создавать и изучать прообразы реальных объектов (процессов), т. е. модели. Можно сказать, что теоретическое знание о чем-либо, как правило, представляет собой совокупность различных моделей. Эти модели отражают существенные свойства реального объекта (процесса), хотя на самом деле действительность значительно содержательнее и богаче.
Модель — это мысленно представляемая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает новую информацию об этом объекте.
Познавательные возможности модели обуславливаются тем, что модель отражает какие-либо существенные черты объекта-оригинала. Вопрос о необходимости и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом (тогда она перестает быть оригиналом), так и в случае чрезмерного во всех существенных отношениях отличия от оригинала.
Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько «специализированных» моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.
Подобие между моделируемым объектом и моделью может быть физическое, структурное, функциональное, динамическое, вероятностное и геометрическое. При физическом подобии объект и модель имеет одинаковую или сходную физическую природу. Структурное подобие предполагает наличие сходства между структурой объекта и структурой модели. При выполнении объектом и моделью под определенным воздействием сходных функций наблюдается функциональное подобие. При наблюдении за последовательно изменяющимися состояниями объекта и модели отмечается динамическое подобие. Вероятностное подобие отмечается при наличии сходства между процессами вероятностного характера в объекте и модели. Геометрическое подобие имеет место при сходстве пространственных характеристик объекта и модели.
На сегодняшний день общепризнанной единой классификации моделей не существует. Однако из множества моделей можно выделить словесные, графические, физические, экономико-математические и некоторые другие типы моделей.
Словесная или монографическая модель представляет собой словесное описание объекта, явления или процесса. Очень часто она выражается в виде определения, правила, теоремы, закона или их совокупности.
Графическая модель создается в виде рисунка, географической карты или чертежа. Например, зависимость между ценой и спросом может быть выражена в виде графика, на оси ординат, которого отложен спрос (D), а на оси абсцисс — цена (Р). Кривая нам наглядно иллюстрирует, что с ростом цены спрос падает, и наоборот. Конечно, данную зависимость можно выразить и словесно, но графически она намного нагляднее (рис. 1.1).
Рис. 1.1. Графическая модель, отображающая зависимость между спросом и ценой
Физические или вещественные модели создаются для конструирования пока еще несуществующих объектов. Создать модель самолета или ракеты для проверки ее аэродинамических свойств значительно проще и экономически целесообразнее, чем изучать эти свойства на реальных объектах.
При моделировании используется аналогия между объектом — оригиналом и его моделью. Аналогии бывают следующими:
1) внешняя аналогия (модель самолета, корабля, микрорайона, выкройка);
2) структурная аналогия (водопроводная сеть и электросеть моделируются с помощью графов, отражающих все связи и пересечения, но не длины отдельных трубопроводов);
3) динамическая аналогия (по поведению системы) — маятник моделирует электрический колебательный контур.
Математические модели относятся ко второму и третьему типу. Смысл математического моделирования заключается в том, что эксперименты проводятся не с реальной физической моделью объекта, а с его описанием. Для них свойственно то, ячто они реализуются с использованием информационных технологий. Содержанием любой экономико-математической модели является выраженная в формально-математических соотношениях экономическая сущность условий задачи и поставленной цели. В модели экономическая величина представляется математическим соотношением, но не всегда математическое соотношение является экономическим. «Экономико-математическая модель представляет собой концентрированное выражение общих взаимосвязей и закономерностей экономического явления в математической форме» (академик В.С. Немчинов).
Экономико-математические модели отражают наиболее существенные свойства реального объекта или процесса с помощью системы уравнений. Единой классификации экономико-математических моделей также не существует, хотя можно выделить наиболее значимые их группы в зависимости от признака классификации.
По степени агрегирования объектов моделирования различают модели:
· микроэкономические;
· одно-, двухсекторные (одно-, двухпродуктовые);
· многосекторные (многопродуктовые);
· макроэкономические;
· глобальные.
По учету фактора времени модели подразделяются на:
· статические;
· динамические.
В статических моделях экономическая система описана в статике, применительно к одному определенному моменту времени. Это как бы снимок, срез, фрагмент динамической системы в какой-то момент времени. Динамические модели описывают экономическую систему в развитии.
По цели создания и применения различают модели:
· балансовые;
· эконометрические;
· оптимизационные;
· сетевые;
· систем массового обслуживания;
· имитационные (экспертные).
В балансовых моделях отражается требование соответствия наличия ресурсов и их использования.
Параметры эконометрических моделей оцениваются с помощью методов математической статистики. Наиболее распространены эконометрические модели, представляющие собой системы регрессионных уравнений. В данных уравнениях отражается зависимость эндогенных (зависимых) переменных от экзогенных (независимых) переменных. Данная зависимость в основном выражается через тренд (длительную тенденцию) основных показателей моделируемой экономической системы. Эконометрические модели используются для анализа и прогнозирования конкретных экономических процессов с использованием реальной статистической информации.
Оптимизационные модели позволяют найти из множества возможных (альтернативных) вариантов наилучший вариант производства, распределения или потребления. Ограниченные ресурсы при этом будут использованы наилучшим образом для достижения поставленной цели.
Сетевые модели наиболее широко используются в управлении проектами. Сетевая модель отображает комплекс работ (операций) и событий и их взаимосвязь во времени. Обычно сетевая модель предназначена для выполнения работ в такой последовательности, чтобы сроки выполнения проекта были минимальными. В этом случае ставится задача нахождения критического пути. Однако существуют и такие сетевые модели, которые ориентированы не на критерий времени, а, например, на минимизацию стоимости работ.
Модели систем массового обслуживания создаются для минимизации затрат времени на ожидание в очереди и времени простоев каналов обслуживания.
Имитационная модель наряду с машинными решениями содержит блоки, где решения принимаются человеком (экспертом). Вместо непосредственного участия человека в принятии решений может выступать база знаний. В этом случае персональный компьютер, специализированное программное обеспечение, база данных и база знаний образуют экспертную систему. Экспертная система предназначена для решения одной или ряда задач методом имитации действий человека, эксперта в данной области.
По учету фактора неопределенности модели подразделяются на:
· детерминированные (с однозначно определенными результатами);
· стохастические (с различными, вероятностными результатами).
По типу математического аппарата различают модели:
· линейного и нелинейного программирования;
· корреляционно-регрессионные;
· матричные;
· сетевые;
· теории игр;
· теории массового обслуживания и т. д.
Особенности экономических наблюдений и измерений Уже длительное время главным тормозом практического применения математического моделирования в экономике является наполнение разработанных моделей конкретной и качественной информацией. Точность и полнота первичной информации, реальные возможности ее сбора и обработки во многом определяют выбор типов прикладных моделей. С другой стороны, исследования по моделированию экономики выдвигают новые требования к системе информации.
В зависимости от моделируемых объектов и назначения моделей используемая в них исходная информация имеет существенно различный характер и происхождение. Она может быть разделена на две категории: о прошлом развитии и современном состоянии объектов (экономические наблюдения и их обработка) и о будущем развитии объектов, включающую данные об ожидаемых изменениях их внутренних параметров и внешних условий (прогнозы). Вторая категория информации является результатом самостоятельных исследований, которые также могут выполняться посредством моделирования.
Методы экономических наблюдений и использования результатов этих наблюдений разрабатываются экономической статистикой. Поэтому стоит отметить только специфические проблемы экономических наблюдений, связанные с моделированием экономических процессов.
В экономике многие процессы являются массовыми; они характеризуются закономерностями, которые не обнаруживаются на основании лишь одного или нескольких наблюдений. Поэтому моделирование в экономике должно опираться на массовые наблюдения.
Другая проблема порождается динамичностью экономических процессов, изменчивостью их параметров и структурных отношений. Вследствие этого, экономические процессы приходится постоянно держать под наблюдением, необходимо иметь устойчивый поток новых данных. Поскольку наблюдения за экономическими процессами и обработка эмпирических данных обычно занимают довольно много времени, то при построении математических моделей экономики требуется корректировать исходную информацию с учетом ее запаздывания.
Познание количественных отношений экономических процессов и явлений опирается на экономические измерения. Точность измерений в значительной степени предопределяет и точность конечных результатов количественного анализа посредством моделирования. Поэтому необходимым условием эффектного использования математического моделирования является совершенствование экономических измерителей. Применение математического моделирования заострило проблему измерений и количественных сопоставлений различных аспектов и явлений социально-экономического развития, достоверности и полноты получаемых данных, их защиты от намеренных и технических искажений.
В процессе моделирования возникает взаимодействие «первичных» и «вторичных» экономических измерителей. Любая модель народного хозяйства опирается на определенную систему экономических измерителей (продукции, ресурсов, элементов и т. д.). В то же время одним из важных результатов народнохозяйственного моделирования является получение новых (вторичных) экономических измерителей — экономически обоснованных цен на продукцию различных отраслей, оценок эффективности разнокачественных природных ресурсов, измерителей общественной полезности продукции. Однако эти измерители могут испытывать влияние недостаточно обоснованных первичных измерителей, что вынуждает разрабатывать особую методику корректировки первичных измерителей для хозяйственных моделей.
Основные этапы построения математической модели.
Чтобы воспользоваться математической моделью для конкретной производственно-экономической ситуации, следует применить информационную технологию. Информационная технология позволяет безошибочно выделить из множества реальных производственно-экономических ситуаций именно ту, которая полностью соответствует конкретным обстоятельствам. Эта технология состоит из следующих восьми этапов.
Этап 1. ВЫБОР ОБЪЕКТА МОДЕЛИРОВАНИЯ (например: склад готовой продукции; организация выпуска новой продукции или системы транспортных перевозок и т. п.).
Этап 2. АНАЛИЗ ПРОБЛЕМНОЙ СИТУАЦИИ, сложившейся в рассматриваемом объекте моделирования. Например, для нормального функционирования склада готовой продукции необходимо увязать скорость потребления продукции со временем поставки и размерами складских площадей, оборотными средствами, которые всегда оказываются ограниченными.
Этап 3. ТИП И ЧИСЛО НЕНАБЛЮДАЕМЫХ ПАРАМЕТРОВ (отыскиваемых значений ЦФ и основных переменных X j), определение которых позволит выбрать обоснованное управление конкретного экономического объекта.
Этап 4. ТИП И ЧИСЛО НАБЛЮДАЕМЫХ ПАРАМЕТРОВ (задаваемых значений правых частей ограничений b[i], коэффициентов затрат a[ij], граничных условий для отыскиваемых переменных.
Этап 5. УСЛОВИЕ АДЕКВАТНОСТИ, то есть уверенность в том, что математическая модель экономического объекта полностью (или в главных чертах) характеризует его действительное оптимальное функционирование. Обычно адекватность ставится в зависимость от численного значения критерия оптимальности (или нескольких таких критериев при многокритериальной оптимизации).
Этап 6. ИСПОЛЬЗУЕМЫЙ МАТЕМАТИЧЕСКИЙ АППАРАТ, соответствующий конкретному математическому описанию производственно-экономической ситуации. (Например, аналитические связи между основными параметрами движения запасов).
Этап 7. АНАЛИЗ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ экономического объекта: оптимальных значений основных переменных и целевой функции. Эти значения составляют основу экономического анализа конкретного объекта, за которым следуют выводы.
Этап 8. ПРИНЯТИЕ РЕШЕНИЯ. По результатам оптимальных значений и сделанных на этапе 7 выводов принимается решение по управлению экономическим объектом.
Можно сделать вывод, что для понимания сущности моделирования важно не упускать из виду, что моделирование — не единственный источник знаний об объекте. Процесс моделирования «погружен» в более общий процесс познания. Это обстоятельство учитывается не только на этапе построения модели, но и на завершающей стадии, когда происходит объединение и обобщение результатов исследования, получаемых на основе многообразных средств познания.
Моделирование — циклический процесс. Это означает, что за первым восьмиэтапным циклом может последовать второй, третий и т. д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.
По мере развития и усложнения экономико-математического моделирования его отдельные этапы обособляются в специализированные области исследований, усиливаются различия между теоретико-аналитическими и прикладными моделями, происходит дифференциация моделей по уровням абстракции и идеализации.
Теория математического анализа моделей экономики развилась в особую ветвь современной математики — математическую экономику. Модели, изучаемые в рамках математической экономики, теряют непосредственную связь с экономической реальностью; они имеют дело с исключительно идеализированными экономическими объектами и ситуациями. При построении таких моделей главным принципом является не столько приближение к реальности, сколько получение возможно большего числа аналитических результатов посредством математических доказательств. Ценность этих моделей для экономической теории и практики состоит в том, что они служат теоретической базой для моделей прикладного типа.
Довольно самостоятельными областями исследований становятся подготовка и обработка экономической информации и разработка математического обеспечения экономических задач (создание баз данных и банков информации, программ автоматизированного построения моделей и программного сервиса для экономистов-пользователей). На этапе практического использования моделей ведущую роль должны играть специалисты в соответствующей области экономического анализа, планирования, управления. Главным участком работы экономистов-математиков остается постановка и формализация экономических задач и синтез процесса экономико-математического моделирования.
ГЛАВА 2. Основы математического моделирования взаимосвязи экономических переменных
2.1 Основы регрессионного анализа
Понятие корреляционного и регрессионного анализа.
Для решения задач экономического анализа и прогнозирования очень часто используются статистические, отчетные или наблюдаемые данные. При этом полагают, эти данные являются значениями случайной величины.
Случайной величиной называется переменная величина, которая в зависимости от случая принимает различные значения с некоторой вероятностью. Закон распределения случайной величины показывает частоту ее тех или иных значений в общей их совокупности.
При исследовании взаимосвязей между экономическими показателями на основе статистических данных, часто между ними наблюдается стохастическая зависимость. Она проявляется в том, что изменение закона распределения одной случайной величины происходит под влиянием изменения другой. Взаимосвязь между величинами может быть полной (функциональной) и неполной (искаженной другими факторами).
Пример функциональной зависимости — выпуск продукции и ее потребление в условиях дефицита.
Неполная зависимость наблюдается, например, между стажем рабочих и их производительностью труда. Обычно рабочие с большим стажем работы работают лучше молодых, но под влиянием дополнительных факторов — образование, здоровье и т. д. эта зависимость может быть искажена.
Раздел математической статистики, посвященный изучению взаимосвязей между случайными величинами называется корреляционным анализом. Основная задача корреляционного анализа — это установление характера и тесноты связи между результативными (зависимыми) и факторными (независимыми) показателями (признаками) в данном явлении или процессе. Корреляционную связь можно обнаружить только при массовом сопоставлении фактов.
Характер связи между показателями определяется по корреляционному полю. Если Y— зависимый признак, а Х— независимый, то отметив каждый случай X(i) с координатами xi и yi получим корреляционное поле.
Теснота связи определяется с помощью коэффициента корреляции, который рассчитывается специальным образом и лежит в интервалах от минус единицы до плюс единицы. Если значение коэффициента корреляции лежит в интервале от 1 до 0,9 по модулю, то отмечается очень сильная корреляционная зависимость. В случае, если значение коэффициента корреляции лежит в интервале от 0,9 до 0,6, то говорят, что имеет место слабая корреляционная зависимость. Наконец, если значение коэффициента корреляции находится в интервале от 0,6 до 0,6, то говорят об очень слабой корреляционной зависимости или полной ее отсутствии.
Таким образом, корреляционный анализ применяется для нахождения характера и тесноты связи между случайными величинами.
Регрессионный анализ своей целью имеет вывод, определение (идентификацию) уравнения регрессии, включая статистическую оценку его параметров. Уравнение регрессии позволяет найти значение зависимой переменной, если величина независимой или независимых переменных известна.
Практически, речь идет о том, чтобы, анализируя множество точек на графике (т.е. множество статистических данных), найти линию, по возможности, точно отражающую заключенную в этом множестве закономерность (тренд, тенденцию) — линию регрессии.
По числу факторов различают одно-, двухи многофакторные уравнения регрессии.
По характеру связи однофакторные уравнения регрессии подразделяются на:
а) линейные:
где X — экзогенная (независимая) переменная;
Y — эндогенная (зависимая, результативная) переменная;
a, b — параметры.
б) степенные:
в) показательные:
модель математический переменная уравнение оптимизационный
г) прочие.
Определение параметров линейного однофакторного уравнения регрессии.
Пусть у нас имеются данные о доходах (X) и спрос на некоторый товар (Y) за ряд лет (n)
ГОД n | ДОХОД X | СПРОС Y | |
x1 | y1 | ||
x2 | y2 | ||
x3 | y3 | ||
… | … | … | |
n | xn | yn | |
Предположим, что между X и Y существует линейная взаимосвязь, т. е.
Для того, чтобы найти уравнение регрессии, прежде всего нужно исследовать тесноту связи между случайными величинами X и Y, т. е. корреляционную зависимость.
Пусть:
x, х,. .. ,хn— совокупность значений независимого, факторного признака;
y, y... ,yn — совокупность соответствующих значений зависимого, результативного признака;
n — количество наблюдений.
Для нахождения уравнения регрессии вычисляются следующие величины:
Средние значения
для экзогенной переменной.
для эндогенной переменной$
2. Отклонения от средних величин
$
Величины дисперсии и среднего квадратичного отклонения
, .
Величины дисперсии и среднего квадратичного отклонения характеризуют разброс наблюдаемых значений вокруг среднего значения. Чем больше дисперсия, тем больше разброс.
Вычисление корреляционного момента (коэффициента ковариации):
Корреляционный момент отражает характер взаимосвязи между x и y. Если, то взаимосвязь прямая. Если, то взаимосвязь обратная.
Коэффициент корреляции вычисляется по формуле:
.
Доказано, что коэффициент корреляции находится в интервале от минус единицы до плюс единицы (). Коэффициент корреляции в квадрате () называется коэффициентом детерминации.
Если, то вычисления продолжаются.
Вычисления параметров регрессионного уравнения.
Коэффициент b находится по формуле:
После чего можно легко найти параметр a:
Коэффициенты a и b находятся методом наименьших квадратов, основная идея которого состоит в том, что за меру суммарной погрешности принимается сумма квадратов разности (остатков) между фактическими значениями результативного признака и его расчетными значениями, полученными при помощи уравнения регрессии
.
При этом величины остатков находятся по формуле:
где
фактическое значение y;
расчетное значение y.
Пример. Пусть у нас имеются статистические данные о доходах (X) и спросе (Y). Необходимо найти корреляционную зависимость между ними и определить параметры уравнения регрессии.
ГОД n | ДОХОД X | СПРОС Y | |
10,3 | |||
10,5 | |||
Предположим, что между нашими величинами существует линейная зависимость.
Тогда расчеты лучше всего выполнить в Excel, используя статистические функции;
СРЗНАЧ — для вычисления средних значений;
ДИСП — для нахождения дисперсии;
СТАНДОТКЛОН — для определения среднего квадратичного отклонения;
КОРЕЛЛ — для вычисления коэффициента корреляции.
Корреляционный момент можно вычислить, найдя отклонения от средних значений для ряда X и ряда Y, затем при помощи функции СУММПРОИЗВ определить сумму их произведений, которую необходимо разделить на n-1.
Результаты вычислений можно свести в таблицу.
Параметры линейного однофакторного уравнения регрессии
Показатели | X | Y | |
Среднее значение | 9,3 | ||
Дисперсия | 6,08 | ||
Среднее квадр. отклонение | 3,7417 | 2,4658 | |
Корреляционный момент | 8,96 | ||
Коэффициент корреляции | 0,9712 | ||
Параметры | b=0,64 | a = 0,3 | |
В итоге наше уравнение будет иметь вид:
y = 0.3 + 0.64x
Используя это уравнение, можно найти расчетные значения Y и построить график (рис. 2.1).
Рис. 2.1. Фактические и расчетные значения
Ломаная линия на графике отражает фактические значения Y, а прямая линия построена с помощью уравнения регрессии и отражает тенденцию изменения спроса в зависимости от дохода.
Однако встает вопрос, насколько значимы параметры a и b? Какова величина погрешности?
Оценка величины погрешности линейного однофакторного уравнения
Обозначим разность между фактическим значением результативного признака и его расчетным значением как :
где
фактическое значение y;
расчетное значение y,
- разность между ними.
В качестве меры суммарной погрешности выбрана величина:
.
Для нашего примера S = 0.432.
Поскольку (среднее значение остатков) равно нулю, то суммарная погрешность равна остаточной дисперсии:
Остаточная дисперсия находится по формуле:
Для нашего примера. Можно показать, что
.
Если то
то
Таким образом, .
Легко заметить, что если, то
Это соотношение показывает, что в экономических приложениях допустимая суммарная погрешность может составить не более 20% от дисперсии результативного признака .
Стандартная ошибка уравнения находится по формуле:
где
— остаточная дисперсия. В нашем случае .
Относительная погрешность уравнения регрессии вычисляется как:
где стандартная ошибка;
— среднее значение результативного признака.
В нашем случае = 7.07%.
Если величина мала и отсутствует автокорреляция остатков, то прогнозные качества оцененного регрессионного уравнения высоки.
Стандартная ошибка коэффициента b вычисляется по формуле:
В нашем случае она равна .
Для вычисления стандартной ошибки коэффициента a используется формула:
В нашем примере .
Стандартные ошибки коэффициентов используются для оценивания параметров уравнения регрессии.
Коэффициенты считаются значимыми, если
В нашем примере
Коэффициент а не значим, т.к. указанное отношение больше 0.5, а относительная погрешность уравнения регрессии слишком высока — 26.7%.
Стандартные ошибки коэффициентов используются также для оценки статистической значимости коэффициентов при помощи t — критерия Стьюдента. Значения t — критерия Стьюдента содержатся в справочниках по математической статистике. В таблице 2.1 приводятся его некоторые значения.
Далее находятся максимальные и минимальные значения параметров () по формулам:
Таблица 2.1
Некоторые значения t — критерия Стьюдента
Степени свободы | Уровень доверия (с) | ||
(n-2) | 0,90 | 0,95 | |
6,31 | 12,71 | ||
2,92 | 4,30 | ||
2,35 | 3,18 | ||
2,13 | 2,78 | ||
2,02 | 2,57 | ||
Для нашего примера находим:
Если интервал () достаточно мал и не содержит ноль, то коэффициент b является статистически значимым на с — процентном доверительном уровне.
Аналогично находятся максимальные и минимальные значения параметра а. Для нашего примера:
Коэффициент а не является статистически значимым, т.к. интервал () велик и содержит ноль.
Вывод: полученные результаты не являются значимыми и не могут быть использованы для прогнозных расчетов. Ситуацию можно поправить следующими способами:
а) увеличить число n;
б) увеличить количество факторов;
в) изменить форму уравнения.
Проблема автокорреляции остатков. Критерий Дарбина-Уотсона
Часто для нахождения уравнений регрессии используются динамические ряды, т. е. последовательность экономических показателей за ряд лет (кварталов, месяцев), следующих друг за другом.
В этом случае имеется некоторая зависимость последующего значения показателя, от его предыдущего значения, которое называется автокорреляцией. В некоторых случаях зависимость такого рода является весьма сильной и влияет на точность коэффициента регрессии.
Пусть уравнение регрессии построено и имеет вид:
— погрешность уравнения регрессии в год t.
Явление автокорреляции остатков состоит в том, что в любой год t остаток не является случайной величиной, а зависит от величины остатка предыдущего года. В результате при использовании уравнения регрессии могут быть большие ошибки.
Для определения наличия или отсутствия автокорреляции применяется критерий Дарбина-Уотсона:
.
Возможные значения критерия DW находятся в интервале от 0 до 4. Если автокорреляция остатков отсутствует, то DW2.
Построение уравнения степенной регрессии
Уравнение степенной агрессии имеет вид:
где
a, b - параметры, которые определяются по данным таблицы наблюдений.
Таблица наблюдений составлена и имеет вид:
x | x1 | x2 | … | xn | |
y | y1 | y2 | … | yn | |
Прологарифмируем исходное уравнение и в результате получим:
ln y = ln a + bln x .
Обозначим ln y через , ln a как , а ln x как .
В результате подстановки получим:
Данное уравнение есть ничто иное, как уравнение линейной регрессии, параметры которого мы умеем находить.
Для этого прологарифмируем исходные данные:
ln x | ln x1 | ln x2 | … | ln xn | |
ln y | ln y1 | ln y2 | … | ln yn | |
Далее необходимо выполнить известные нам вычислительные процедуры по нахождению коэффициентов a и b, используя прологарифмированные исходные данные. В результате получим значение коэффициента b и. Параметр a можно найти по формуле:
.
В этих же целях можно воспользоваться функцией EXP в Excel.
Двухфакторные и многофакторные уравнения регрессии
Линейное двухфакторное уравнение регрессии имеет вид:
где — параметры;
— экзогенные переменные;
y — эндогенная переменная.
Идентификацию этого уравнения лучше всего производить с использованием функции Excel ЛИНЕЙН.
Степенное двухфакторное уравнение регрессии имеет вид:
где — параметры;
— экзогенные переменные;
Y — эндогенная переменная.
Для нахождения параметров этого уравнения его необходимо прологарифмировать. В результате получим:
.
Идентификацию этого уравнения также лучше всего производить с использованием функции Excel ЛИНЕЙН. Следует помнить, что мы получим не параметр a, а его логарифм, которое следует преобразовать в натуральное число.
Линейное многофакторное уравнения регрессии имеет вид:
где n— параметры;
n — экзогенные переменные;
y — эндогенная переменная.
Идентификацию этого уравнения также лучше всего производить с использованием функции Excel ЛИНЕЙН.
Таким образом, объектом изучения эконометрики, как самостоятельного раздела математической экономики, являются экономико-математические модели, которые строятся с учетом случайных факторов. Такие модели называются эконометрическими моделями. Исследование эконометрических моделей проводится на основе статистических данных об изучаемом объекте и с помощью методов математической статистики.
Основными задачами эконометрики являются: получение наилучших оценок параметров экономико-математических моделей, конструируемых в прикладных целях; проверка теоретико-экономических положений и выводов на фактическом (эмпирическом) материале; создание универсальных и специальных методов для обнаружения статистических закономерностей в экономике.
Для установления статистической зависимости (уравнения регрессии) между изучаемым экономическим показателем (объясняемой переменной) и влияющими на нее факторами (объясняющими переменными) проводится регрессионный анализ. Такой анализ предполагает идентификацию объясняющих переменных, спецификацию формы искомой связи между переменными, определение и оценку конкретных числовых значений параметров уравнения регрессии.
Для выявления тесноты связи между экономическими величинами в уравнении регрессии проводится корреляционный анализ. В ходе корреляционного анализа изучается сила влияния различных причин (последствия линейной регрессии и влияние неучтенных в модели факторов) вариации объясняемой переменной.
ГЛАВА 3. Оптимизационные методы математики в экономике
3.1 Оптимизационные модели
Понятие оптимизационных задач и оптимизационных моделей.
Экономико-математические задачи, цель которых состоит в нахождении наилучшего (оптимального) с точки зрения некоторого критерия или критериев варианта использования имеющихся ресурсов (труда, капитала и пр.), называются оптимизационными.
Оптимизационные задачи (ОЗ) решаются с помощью оптимизационных моделей (ОМ) методами математического программирования.
Структура оптимизационной модели состоит из целевой функции, области допустимых решений и системы ограничений, определяющими эту область. Целевая функция в самом общем виде в свою очередь также состоит из трех элементов:
· управляемых переменных;
· неуправляемых переменных;
· формы функции (вида зависимости между ними).
Область допустимых решений — это область, в пределах которой осуществляется выбор решений. В экономических задачах она ограничена наличными ресурсами, условиями, которые записываются в виде системы ограничений, состоящей из уравнений и неравенств.
Если система ограничений несовместима, то область допустимых решений является пустой. Ограничения подразделяются на:
а) линейные (I и II) и нелинейные (III и IV) (рис. 3.1.);
Рис. 3.1. Линейные и нелинейные ограничения
б) детерминированные (А, В) и стохастические (группы кривых) (рис. 3.2.).
Рис. 3.2. Детерминированные и стохастические ограничения Стохастические ограничения являются возможными, вероятностные, случайными.
Оптимизационные задачи решаются методами математического программирования, которые подразделяются на:
линейное программирование;
нелинейное программирование;
динамическое программирование;
целочисленное программирование;
выпуклое программирование;
исследование операций;
геометрическое программирование и др.
Главная задача математического программирования — это нахождение экстремума функций при ограничениях в форме уравнений и неравенств.
Рассмотрим оптимизационные задачи, решаемые методами линейного программирования.
Оптимизационные задачи с линейной зависимостью между переменными
Пусть:
— количество ресурса вида i (i=1,2,…, m);
— норма расхода i — го ресурса на единицу j — го вида продукции;
— количество продукции вида j (j=1,2,…, n);
— прибыль (доход) от единицы этой продукции (в задачах на минимум — себестоимость продукции).
Тогда оптимизационные задачи линейного программирования (ЛП) в общем виде может быть сформулирована и записана следующим образом:
Найти переменные, при которых целевая функция
была бы максимальной (минимальной), не нарушая следующих ограничений:
.
Вcе три случая можно привести к так называемой канонической форме, введя дополнительные переменные:
k — количество дополнительных переменных, и условие неотрицательности искомых переменных:
.
В результате решения задачи находится некий план (программа) работы некоторого предприятия. Отсюда и появилось слово «программирование». Слово линейное указывает на линейный характер зависимости как в целевой функции, так и в системе ограничений. Следует еще раз подчеркнуть, что задача обязательно носит экстремальный характер, т. е. состоит в отыскании максимума или минимума (экстремума) целевой функции.
Геометрическая интерпретация оптимизационных задач линейного программирования.
Пусть необходимо найти оптимальный план производства двух видов продукции (x1 и x2), т. е. такой план, при котором целевая функция (общая прибыль) была бы максимальной, а имеющиеся ресурсы использовались бы наилучшим образом. Условия задачи приведены в таблице:
Вид продукции | Норма расхода ресурса на единицу продукции | Прибыль на единицу изделия | |||
А | В | С | |||
0,1 | 3,5 | ||||
0,5 | |||||
Объем ресурса | |||||
Оптимизационная модель задачи запишется следующим образом:
а) целевая функция:
б) ограничения:
2х1 + х2 12 (ограничение по ресурсу А);
0,1х1 + 0,5х2 4 (ограничение по ресурсу B);
3,5х1 + х2 18 (ограничение по ресурсу C).
в) условие неотрицательности переменных:
Данную и подобные оптимизационные модели можно продемонстрировать графически (Рис. 3.3.).
Преобразуем нашу систему ограничений, найдя в каждом из уравнений x2, и отложим их на графике. Любая точка на данном графике с координатами x1 и x2 представляет вариант искомого плана. Однако ограничение по ресурсу А сужает область допустимых решений. Ими могут быть все точки, ограниченные осями координат и прямой АА, т.к. не может быть израсходовано ресурса А больше, чем его на предприятии имеется. Если точки находятся на самой прямой, то ресурс используется полностью.
Аналогичные рассуждения можно привести и для ресурсов В и С. В результате условиям задачи будет удовлетворять любая точка, лежащая в пределах заштрихованного многоугольника. Данный многоугольник называется областью допустимых решений.
Рис. 3.3. Геометрическая интерпретация оптимизационной задачи линейного программирования
Однако нам необходимо найти такую точку, в которой достигался бы максимум целевой функции. Для этого построим произвольную прямую 4Х1+5Х2=20, как Х2=4−4/5Х1 (число 20 произвольное). Обозначим эту линию РР. В каждой точке этой линии прибыль одинакова. Перемещая эту линию параллельно ее исходному положению, найдем точку, которая удалена от начала координат в наибольшей мере, однако, не выходит за пределы области допустимых решений. Это точка М0, которая лежит на вершине многоугольника. Координаты этой точки () и будут искомым оптимальным планом.
Симплексный метод решения оптимизационных задач линейного программирования.
Симплексный метод - это вычислительная процедура, основанная на принципе последовательного улучшения решений при переходе от одной базисной точки (базисного решения) к другой. При этом значение целевой функции улучшается.
Базисным решением является одно из допустимых решений, находящихся в вершинах области допустимых значений. Проверяя на оптимальность вершину за вершиной симплекса, приходят к искомому оптимуму. На этом принципе основан симплекс-метод.
Симплекс — это выпуклый многоугольник в n-мерном пространстве с n+1 вершинами, не лежащими в одной гиперплоскости (гиперплоскость делит пространство на два полупространства).
Например, линия бюджетных ограничений делит блага на доступные и недоступные.
Доказано, что если оптимальное решение существует, то оно обязательно будет найдено через конечное число итераций (шагов), кроме случаев «зацикливания».
Алгоритм симплексного метода состоит из ряда этапов.
Первый этап. Строится исходная оптимизационная модель. Далее исходная матрица условий преобразуется в приведенную каноническую форму, которая среди всех других канонических форм выделяется тем, что:
а) правые части условий (свободные члены bi) являются величинами неотрицательными;
б) сами условия являются равенствами;
в) матрица условий содержит полную единичную подматрицу.
Если свободные члены отрицательные, то обе части неравенства умножаются на -1, а знак неравенства меняется на противоположный. Для преобразования неравенств в равенства вводятся дополнительные переменные, которые, обычно, обозначают объем недоиспользованных ресурсов. В этом их экономический смысл.
Наконец, если после добавления дополнительных переменных, матрица условий не содержит полную единичную подматрицу, то вводятся искусственные переменные, которые не имеют никакого экономического смысла. Они вводятся исключительно для того, чтобы получить единичную подматрицу и начать процесс решения задачи при помощи симплексного метода.
В оптимальном решении задачи все искусственные переменные (ИП) должны быть равными нулю. Для этого вводят искусственные переменные в целевую функцию задачи с большими отрицательными коэффициентами (-М) при решении задачи на max, и с большими положительными коэффициентами (+М), когда задача решается на min. В этом случае даже незначительное ненулевое значение искусственной переменной будет резко уменьшать (увеличивать) значение целевой функции. Обычно М в 1000 раз должно быть больше, чем значения коэффициентов при основных переменных.
Второй этап. Строится исходная симплекс-таблица и отыскивается некоторое начальное базисное решение. Множество переменных, образующих единичную подматрицу, принимается за начальное базисное решение. Значения этих переменных равны свободным членам. Все остальные внебазисные переменные равны нулю.
Третий этап. Проверка базисного решения на оптимальность осуществляется при помощи специальных оценок коэффициентов целевой функции. Если все оценки коэффициентов целевой функции отрицательны или равны нулю, то имеющееся базисное решение — оптимальное. Если хотя бы одна оценка коэффициента целевой функции больше нуля, то имеющееся базисное решение не является оптимальным и должно быть улучшено.
Четвертый этап. Переход к новому базисному решению. Очевидно, что в оптимальный план должна быть введена такая переменная, которая в наибольшей степени увеличивает целевую функцию. При решении задач на максимум прибыли в оптимальный план вводится продукция, производство которой наиболее выгодно. Это определяется по максимальному положительному значению оценки коэффициента целевой функции.
Столбец симплексной таблицы с этим номером на данной итерации называется генеральным столбцом.
Далее, если хотя бы один элемент генерального столбца аij0 строго положителен, то отыскивается генеральная строка (в противном случае задача не имеет оптимального решения).
Для отыскания генеральной строки все свободные члены (ресурсы) делятся на соответствующие элементы генерального столбца (норма расхода ресурса на единицу изделия). Из полученных результатов выбирается наименьший. Соответствующая ему строка на данной итерации называется генеральной. Она соответствует ресурсу, который лимитирует производство на данной итерации.
Элемент симплексной таблицы, находящийся на пересечении генеральных столбца и строки, называется генеральным элементом.
Затем все элементы генеральной строки (включая свободный член), делятся на генеральный элемент. В результате этой операции генеральный элемент становится равным единице. Далее необходимо, чтобы все другие элементы генерального столбца стали бы равны нулю, т. е. генеральный столбец должен стать единичным. Все строки (кроме генеральной) преобразуются следующим образом. Полученные элементы новой строки умножаются на соответствующий элемент генерального столбца и полученное произведение вычитается из элементов старой строки.
Значения новых базисных переменных получим в соответствующих ячейках столбца свободных членов.
Пятый этап. Полученное базисное решение проверяется на оптимальность (см. третий этап). Если оно оптимально, то вычисления прекращаются. В противном случае необходимо найти новое базисное решение (четвертый этап) и т. д.
Пример решения оптимизационных задач линейного программирования симплексным методом
Пусть необходимо найти оптимальный план производства двух видов продукции (х1 и х2).
Исходные данные:
Вид продукции | Норма расхода ресурса на единицу прибыли | Прибыль на единицу изделия | ||
А | В | |||
Объем ресурса | ||||
Построим оптимизационную модель
— ограничение по ресурсу А;
— ограничение по ресурсу В.
Приведем задачу к приведенной канонической форме. Для этого достаточно ввести дополнительные переменные Х3 и Х4. В результате неравенства преобразуются в строгие равенства.
Построим исходную симплексную таблицу и найдем начальное базисное решение. Им будут дополнительные переменные, т. к. им соответствует единичная подматрица.
x3=20 и x4=36
Базисные переменные | Свободные члены (план) | x1 | x2 | x3 | x4 | |
x3 | ||||||
x4 | ||||||
Fj - Cj | ||||||
1-я итерация. Находим генеральный столбец и генеральную строку:
max (7,3) = 7
Генеральный элемент равняется 5.
Базисные переменные | Свободные члены (план) | x1 | x2 | x3 | x4 | |
x1 | 0.4 | 0.2 | ||||
x4 | 0.8 | — 1.6 | ||||
Fj - Cj | 0.2 | — 1.4 | ||||
2-я итерация. Найденное базисное решение не является оптимальным, т.к. cтрока оценок (Fj-Cj) содержит один положительный элемент. Находим генеральный столбец и генеральную строку:
max (0,0.3,-1.4,0) = 0.2
Базисные переменные | Свободные члены (план) | x1 | x2 | x3 | x4 | |
x1 | — 0.5 | |||||
x2 | — 2 | 1.25 | ||||
Fj - Cj | — 1 | — 0.25 | ||||
Найденное решение оптимально, так как все специальные оценки целевой функции Fj - Cj равны нулю или отрицательны. F(x)=29 x1=2; x2=5.
Решение оптимизационной задачи линейного программирования в Excel.
Пусть предприятие (например, мебельная фабрика) производит столы и стулья. Расход ресурсов на их производство и прибыль от их реализации представлены ниже:
СТОЛЫ | СТУЛЬЯ | ОБЪЕМ РЕСУРСОВ | ||
Расход древесины на изделие, м3 | 0,5 | 0,04 | ||
Расход труда, чел-час | 0,6 | |||
Прибыль от реализации единицы изделия, руб. | ||||
Кроме того, на производство 80 столов заключен контракт с муниципалитетом, который, безусловно, должен быть выполнен. Необходимо найти такую оптимальную производственную программу, чтобы прибыль от реализации продукции была максимальной.
Пусть x1 — количество столов;
х2 — количество стульев.
Тогда система ограничений и целевая функция запишутся следующим образом:
180x1 + 20х2 max (целевая функция);
0.5x1 + 0.04х2 200 (ограничения по древесине);
12x1 + 0.6х2 1800 (ограничения по труду);
x180 (контракт с муниципалитетом);
x1 0; х2 0;
x1, х2 - целые числа.
Для решения задачи в Excel запишем ее виде, представленном на рис. 3.4.
Рис. 3.4. Запись исходных данных для решения задачи линейной оптимизации Для решения задачи вызовем меню Сервис-Поиск решения (Tools-Solver).
В открывшемся диалоговом окне Поиск решения (рис. 3.5.) укажем: