Экспериментальное исследование и квантово-химическое моделирование переноса Li+ в системе Li-электрод / электролит на основе гамма-бутиролактона
Диссертация
В настоящее время в литиевых и литий-ионных аккумуляторах с интеркаляционным углеродным электродом используются жидкие электролиты, представляющие собой растворы солей лития в апротонных органических растворителях. Существует фундаментальная проблема повышения обратимости электродных реакций, которые сопровождаются побочными процессами разложения электролита при высоких положительных… Читать ещё >
Список литературы
- L.Dominey, in: G. Pistoia (Ed.). Lithium Batteries, New Materials, Developments and Perspectives. Elsevier, New York. 1994. — p. 137.
- H.-J.Gores, J.Barthel. Nonaqueous Solutions: New Materials for Devices and Processes Based on Recent Applied Research // Pure Appl.Chem. 1995. — V.67. — № 6. — P.919−930.
- S.Onishi, H. Faber, S.Petrucci. Ultrasonic and dielectric relaxation of lithium perchlorate in 1,2-dimethoxyethane and 1,3-dioxoIane at 25 °C // J.Phys.Chem. 1980. — V.84. -P.2922−2927.
- H.Faber, D.E.Irish, S.Petrucci. Molecular relaxation of lithium hexafluor о arsenate (LiAsF6) in 1,2-dimethoxyethane// J.Phys.Chem. 1983. -V.87. -P.3515−3520.
- M.Salomon. Liquid electrolytes for rechargeable lithium batteries. Paper presented at the Third International Rechargeable Battery Seminar, Deerfield Beach, FL, March 1992.
- H. Yoshida, T. Fukunaga, T. Hazama, M. Terasaki, M. Mizutani and M. Yamachi. Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging // J. Power Sources. 1997. — V.68. — № 2. — P.311−315.
- M.Salomon and B.Scrosati. lithium batteries: present trends and prospects // Gazzetta Chimica Italiana. 1996. — V. 126. — P.423−435.
- X.Wang, E. Yasukawa, H. Oota, and S. Mori, in Extended Abstracts for 49th Annual Meeting of the International Society of Electrochemistry, Japan, 1998. P.728.
- E.Yasukawa, X. Wang, A. Kominato, S. Mori, K. Ishigaki, and K.Shima. Jpn.Pat. 11 026 016 (1999).
- E.Yasukawa, X. Wang, A. Kominato, S. Mori, K. Ishigaki, and K.Shima. Jpn.Pat. 11 026 017 (1999).
- E.Yasukawa, X. Wang, A. Kominato, S. Mori, K. Ishigaki, and K.Shima. Jpn.Pat. 11 031 528 (1999).
- X.Wang, E. Yasukawa, and S.Mori. Electrochemical Behavior of Lithium Imide/ Cyclic Ether Electrolytes for 4 V Lithium Metal Rechargeable Batteries // J.Electrochem. Soc. -1999. V.146. -№ 11. -P.3992−3998.
- J.Barthel, M. Wuhr, R. Buestrich, H.J.Gores. A New Class of Electrochemically and Thermally Stable Lithium Salts for Lithium Battery // J.Electrochem. Soc. 1995. -V.142. -№ 8. -P.2527−2531.
- M.Handa, M. Suzuki, JSuzuki, H. Kanematsu, and Y.Sasaki. A New Lithium Salt with a Chelate Complex of Phosphorus for Lithium Battery Electrolytes // Electrochemical and Soli-State Lett. 1999. — V.2. — № 2. — P.60−62.
- P. Johansson. Electronic structure calculations on lithium battery electrolyte salts // J. Phys. Chem. Chem. Phys. 2007. -V.9. — P.1493−1498
- M.Salomon, J.T.Hefter. Mobilities of cation-macrocyclic ligand complexes // Pure Appl.Chem. 1993. — V.65. — № 7. -P.1533−1540.
- A.D'Aprano, M. Salomon, V.Mauro. Solvent effects on complexation of crown ethers with LiC104, NaC104 and KC104 in methanol and acetonitrile // J. Solution Chem. -1995. V.24. — № 11. P.685−702.
- M.Salomon, A.F.Danil de Namor, «Thermodynamics of macrocyclic chemistry», Paper presented at the 2nd International Conference on Macrocyclic Ligands for the Desing of New Materials, Buenos Aires, Argentina, September 1994.
- M.Salomon. Conductometric study of cationic and anionic complexes in propylene carbonate // J. Solution Chem. 1990. — V.19. — P. 1225−1236.
- M.Salomon. Alkali metal + macrocyclic ligand complexes in a 36 mass% mixture of propylene carbonate in dichloromethane // J.Electroanalyt.Chem. 1993. — V.355. — № 12. — P.265−276.
- E.B.Кузьминский, В. Д. Присяжный, Е. О. Бережной, Н. Б. Голуб. Апротонные электролиты литиевых источников тока, содержащие краун-эфиры и гексаметапол // Электрохимия. 1998. — V.34. — № 5. — Р.528−531.
- F.Croce, B. Scrosati, M. Salomon, Proc. 36th Power Sources Conference, Cherry Hill, NJ, June 1994, p.57.
- W.S.Harris. PhD Dissertation, University of California, Berkeley, US. 1958. Atomic Energy Commission Report UCRL-8381.
- А.Г.Демахин, В. М. Овсянников, С. М. Пономаренко. Электролитные системы литиевых ХИТ, Саратов: Изд-во Сарат. ун-та, 1993. 217 с.
- И.А.Кедринский, В. Е. Дмитренко, И. И. Грудянов. Литиевые источники тока. Энергоатомиздат, Москва, (1992). С. 56.
- F.Croce, F. Gerace, G. Dautzemberg, S. Passerini, G.B.Appetecchi, B.Scrosati. Synthesis and characterization of highly conducting gel electrolytes // Electrochim. Acta. 1994. -V.39. — № 14. — P.2187−2194.
- Z.Jiang, B. Carroll, K.M.Abraham. Studies of some poly (vinylidene fluoride) electrolytes // Electrochim. Acta. 1997. — V.42. — № 17. — P.2667−2677.
- C.S.Kim, S.M.Oh. Performance of gel-type polymer electrolytes according to the affinity between polymer matrix and plasticizing solvent molecules // Electrochim. Acta. 2001. — V.46. — № 9. — P. 1323−1331.
- Y.Saito, K. Hirai, Т. Сакаи, S. Murata, K. Kii. 9th International Symposium on Polymer Electrolytes, Mragowo, Poland. Extended abstracts. P. 41.
- Y. Saito et al. Designing of a Urea-Containing Polymer Gel Electrolyte Based on the Concept of Activation of the Interaction between the Carrier Ion and Polymer // J. Phys. Chem. B. 2003. — V.107. — № 9. — P.8805−8811.
- Ярмоленко O.B., Белов Д. Г., Ефимов O.H. Влияние краун-эфиров на проводимость пластифицированных электролитов на основе полиакрилонитрила // Электрохимия. -2001.-Т. 37. -№ 3. С.321−327.
- Ярмоленко О.В., Укше А. Е., Якущенко И. К., Мовчан Т. И., Ефимов О. Н. Исследование влияния краун-эфиров на проводимость твердых электролитов на основе полиэтиленоксида // Электрохимия. 1996. — Т. 32. — № 4. — С. 508−510.
- Y.W.Kim, M.S.Gong, B.K.Choi. Ionic conduction and electrochemical properties of new poIy (acrylonitrile-itaconate)-based gel polymer electrolytes // J. Power Sources. — 2001. V.97−98. — № 9. — P.654−656.
- A.M.Christie, L. Ctiristie, C.A.Vincent. Selection of new Kynar-based electrolytes for lithium-ion batteries // J. Power Sources. 1998. — V.74. — № 1. — P.77−86.
- L.Christie, A.M.Christie, C.A.Vincent. LiN (CF3S02)2 Kynar gels at carbon negative electrodes // J. Power Sources. 1999. — V.81−82. — P.378−382.
- T.Michot, A. Nishimoto, M.Watanabe. Electrochemical properties of polymer gel electrolytes based on poly (vinylidene fluoride) copolymer and homopolymer //
- Electrochim. Acta. -'2000. V.45. — № 8−9. — P. 1347−1360.
- C.L. Cheng, C.C. Wan, Y.Y. Wang. Preparation of porous, chemically cross-linked, PVdF-based gel polymer electrolytes for rechargeable lithium batteries // J. Power Sources. 2004. — V.134. — № 2. — P. 202−210.
- M.S. Michael, S.R.S. Prabaharan. Rechargeable lithium battery employing a new ambient temperature hybrid polymer electrolyte based on PVK+PVdF-HFP (copolymer) // J. Power Sources. 2004. — V.136. — № 2. — P.408−415.
- M. M. Nasef, R. R. Suppiah и К. Z.- M. Dahlan. Preparation of polymer electrolyte membranes for lithium batteries by radiation-induced graft copolymerization // Solid State Ionics. 2004. — V. 171. — № 3−4. — P.243−249.
- J. Xu, H. Ye. Polymer gel electrolytes based on oligomeric polyether/cross-linked PMMA blends prepared via in situ polymerization // Electrochemistry Communications.- 2005. V.7. — № 8. — P. 829−835.
- Y. Matoba, S. Matsui, M. Tabuchi, T. Sakai. Electrochemical properties of composite polymer electrolyte applied to rechargeable lithium polymer battery // J. Power Sources.- 2004. V. 137. — № 2. — P. 284−287.
- N.-S. Choi, Y. M. Lee, W. Seol, J.A. Lee, J.-K.Park. Protective coating of lithium metal electrode for interfacial enhancement with gel polymer electrolyte // Solid State Ionics. -2004. V. 172. — № 1−4. — P. 19−24.
- D.Aurbach, Y. Ein-Eli, B. Markovsky, A. Zabon, Y. Carmeli, and H.Yamin. The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries // J.Electrochem. Soc. 1995. — V.142. -№ 9. -P.2882−2890.
- Y. Ein-Eli, S.F. McDevitt, D. Aurbach, B. Markovsky, A. Schecheter. Methyl Propyl Carbonate: A Promising Single Solvent for Li-Ion Battery Electrolytes // J.Electrochem.Soc. 1997. — V.144. — № 7. — P. L180-L184.
- D. Aurbach, Y. Ein-Eli. The Study of Li-Graphite Intercalation Processes in Several Electrolyte Systems Using In Situ X-Ray Diffraction // J. Electrochem. Soc. 1995. -V.142. — № 9. — P.1746−1751.
- R. Mogi, M. Inaba, Y. Iriyama, T. Abe, Z. Ogumi. Study on the decomposition mechanism of allcyl carbonate on lithium metal by pyrolysis-gas chromatography-mass spectroscopy//!. Power Sources. -2003. -V.l 19−121. -P. 597−603.
- S.S. Zhang, M.S. Ding, K. Xu, J. Allen, T.R. Jow. Understanding Solid Electrolyte1. terface Film Formation on Graphite Electrodes // Electrochem. Solid-State Lett. -2001. V.4. — № 12. — P. A206-A208.
- S.S. Zhang, K. Xu, T.R. Jow. EIS study on the formation of solid electrolyte interface in Li-ion battery // Electrochim. Acta. 2006. — V.51. — № 8−9. — P. 1636−1640.
- K. Xu, S.S. Zhang, T.R. Jow. Formation of the Graphite/Electrolyte Interface by Lithium Bis (oxalato)borate // Electrochem. Solid-State Lett. 2003. — V.6. — № 6. — P. A117-A120.
- B. Simon, J.P. Boeuve, U.S. Patent 5,626,981 (1997).
- D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heider. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries // Electrochim. Acta. 2002. — V.47. — № 9. — P.1423−1439.
- M. Contestabile, M. Morselli, R. Paraventi, R.J. Neat. A comparative study on the effect of electrolyte/additives on the performance of ICP383562 Li-ion polymer (soft-pack) cells // J. Power Sources. 2003. — V. 119−121. — P.943−947.
- D. Aurbach, J.S. Gnanaraj, W. Geissler, M. Schmidt. Vinylene Carbonate and Li Salicylatoborate as Additives in LiPF3(CF2CF3)3 Solutions for Rechargeable Li-Ion Batteries // J. Electrochem. Soc. 2004. — V. 151. — № 1. — P. A23-A30.
- G. Chen, G.V. Zhuang, T.J. Richardson, G. Liu, P.N.J. Ross. Anodic Polymerization of Vinyl Ethylene Carbonate in Li-Ion Battery Electrolyte // Electrochem. Solid-State Lett. 2005. — V.8. — № 7. — P. A344-A347.
- T. Sasaki, T. Abe, Y. Iriyama, M. Inaba, Z. Ogumi. Suppression of an Alkyl Dicarbonate Formation in Li-Ion Cells // J. Electrochem. Soc. 2005. — V.152. — № 10. -P. A2046-A2050.
- J.T. Lee, Y.W. Lin, Y.S. Jan. Allyl ethyl carbonate as an additive for lithium-ion battery electrolytes // J. Power Sources. 2004. — V.132. -P. 244−248.
- T. Kitakura, K. Abe, H. Yoshitake, 11th International Meeting on Lithium Batteries, Monterey, CA, June 23−28, 2002.
- K. Abe, H. Yoshitake, T. Kitakura, T. Hattori, H. Wang, M. Yoshio. Additivescontaining functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries // Electrochim. Acta. 2004. — V.49. — № 26. — P.4613−4622.
- J. Ufheil, M.C. Baertsch, A. W. ursig, P. Novak. Maleic anhydride as an additive to y-butyrolactone solutions for Li-ion batteries // Electrochim. Acta. 2005. — V.50. — № 7−8. — P.1733−1738.
- Yoshino, Proceedings of the 3rd Hawaii Battery Conference, ARAD Enterprises, Hilo, HI, January 3,2001, P.449.
- Yoshino, Proceedings of the 4th Hawaii Battery Conference, ARAD Enterprises, Hilo, HI, January 8, 2002, P. 102.
- H. Gan, E.S. Takeuchi, U.S. Patent 6,495,285 (2002).
- M. Yamada, K. Usami, N. Awano, N. Kubota, Y. Takeuchi, U.S. Patent 6,872,493 (2005).
- G. Schroeder, B. Gierczyk, D. Waszak, M. Kopczyk, M. Walkowiak. Vinyl tris-2-methoxyethoxy silane A new class of film-forming electrolyte components for Li-ion cells with graphite anodes // Electrochem. Commun. — 2006. — V.8. — № 4. — P.523−527.
- C. Korepp, H.J. Santner, T. Fujii, M. Ue, J.O. Besenhard, K.C. Moller M. Winter. 2-Cyanofuran A novel vinylene electrolyte additive for PC-based electrolytes in lithium-ion batteries // J. Power Sources. -2006. — V. l58. — P.578−582.
- H. Gan, E.S. Takeuchi, U.S. Patent 6,136,477 (2000).
- H. Gan, E.S. Takeuchi, U.S. Patent 6,027,827 (2000).
- R. Mogi, M. Inaba, S.K. Jeong, Y. Iriyama, T. Abe, Z. Ogumia. Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate // J.Electrochem. Soc. 2002. — V.149. -№ 12. — P. A1578-A1583.
- Z.X. Shu, R.S. McMillan, JJ. Murray, I J. Davidson. Use of Chloroethylene Carbonate as an Electrolyte Solvent for a Lithium Ion Battery Containing a Graphitic Anode // J. Electrochem. Soc. 1995. — V.142. — № 9. — P. L161-L162.
- Z.X. Shu, R.S. McMillan, JJ. Murray, I.J. Davidson. Use of Chloroethylene Carbonate as an Electrolyte Solvent for a Graphite Anode in a Lithium-Ion Battery // J. Electrochem. Soc. 1996. — V.143. — № 7. — P.2230−2235.
- R. McMillan, H. Slegr, Z.X. Shu, W.D. Wang. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes // J. Power Sources. 1999. — V.81−82. -P.20−26.
- A. Naji, J. Ghanbaja, P. Willmann, D. Billaud. New halogenated additives to propylene carbonate-based electrolytes for lithium-ion batteries // Electrochim. Acta. 2000. -V.45. -№ 12. -P.1893−1899.
- S.S. Zhang, K. Xu, T.R. Jow. Study of the charging process of a LiCo02-based Li-ion battery // J. Power Sources. 2006. — V.160. — № 2. — P. 1349−1354.
- X. Sun, H.S. Lee, X.Q. Yang, J. McBreen. Using a Boron-Based Anion Receptor Additive to Improve the Thermal Stability of LiPF6-Based Electrolyte for Lithium Batteries // Electrochem. Solid-State Lett. 2002. — V.5. — № 11. — P. А248-Л251.
- X. Sun, H.S. Lee, X.Q. Yang, J. McBreen. The Compatibility of a Boron-Based Anion Receptor with the Carbon Anode in Lithium-Ion Batteries // Electrochem. Solid-State Lett. 2003. — V.6. — № 2. — P. A43-A46.
- M. Herstedt, M. Stjerndahl, T. Gustafsson, K. Edstrom. Anion receptor for enhanced thermal stability of the graphite anode interface in a Li-ion battery // Electrochem. Commun. 2003. — V.5. — № 6. — P.467−472.
- Z.H. Chen, K. Amine. Tris (pentafluorophenyl) Borane as an Additive to Improve the Power Capabilities of Lithium-Ion Batteries // J. Electrochem. Soc. 2006. — V.153. -№ 6. — P. A1221-A1225.
- H.S. Lee, X.Q. Yang, C.L. Xiang, J. McBreen, L.S. Choi. The Synthesis of a New Family of Boron-Based Anion Receptors and the Study of Their Effect on Ion Pair Dissociation and Conductivity of Lithium Salts in Nonaqueous Solutions // J.
- Electrochem. Soc. 1998. — V.145. — № 8. — P.2813−2818.
- S.S. Zhang, K. Xu, T.R. Jow. A Thermal Stabilizer for LiPF6-Based Electrolytes of Li-Ion Cells // Electrochem. Solid-State Lett. 2002. — V.5. — № 9. — P. A206−208.
- S. Komaba, T. Itabashi, B. Kaplan, H. Groult, N. Kumagai. Enhancement of Li-ion battery performance of graphite anode by sodium ion as an electrolyte additive // Electrochem. Commun. 2003. — V.5. — № 11. — P.962−966.
- B. Simon, J.P. Boeuve, M. Broussely. Electrochemical study of the passivating layer on lithium intercalated carbon electrodes in nonaqueous solvents // J. Power Sources. -1993.-V.43.-№ 1−3.-P.65−74.
- G.V. Zhuang, H. Yang, B. Blizanac, P.N. Ross Jr. A Study of Electrochemical Reduction of Ethylene and Propylene Carbonate Electrolytes on Graphite Using ATR-FTIR Spectroscopy // Electrochem. Solid- State Lett. 2005. — V.8. — № 9. — P. A441-A445.
- M.D. Levi, E. Markevich, C. Wang, M. Koltypin, D. Aurbach. The effect of dimethyl pyrocarbonate on electroanalytical behavior and cycling of graphite electrodes // J. Electrochem. Soc. 2004. — V. 151. — № 6. — P. A848-A856.
- J.S. Shin, С.Ы. Han, U.II. Jung, S.I. Lee, H.J. Kim, K. Kim. Effect of Li2C03 additive on gas generation in lithium-ion batteries // J. Power Sources. 2002. — V.109. — № 1. -P.47−52.
- Y.K. Choi, K.I. Chung, W.S. Kim, Y.E. Sung, S.M. Park. Suppressive effect of Li2C03 on initial irreversibility at carbon anode in Li-ion batteries // J. Power Sources. 2002. -V.104. — № 1. — P.132−139.
- J.T. Lee, M.S.Wu, F.M.Wang, Y.W. Lin, M.Y. Bai, P.C. Chiang. Effects of Aromatic Esters as Propylene Carbonate-Based Electrolyte Additives in Lithium-Ion Batteries // J. Electrochem. Soc. 2005. — V. 152. — № 9. — P. A1837-A1843.
- Wang, H. Nakamura, H. Komatsu, M. Yoshio, H. Yoshitake. Electrochemical behaviour of a graphite electrode in propylene carbonate and l, 3-benzodioxol-2-one based electrolyte system // J. Power Sources. 1998. — V.74. — № 1. — P.142−145.
- J.B. Gong, T. Tsumura, H. Nakamura, M. Yoshio, II. Yoshitake, T. Abe, 202nd ECS Meeting Abstracts, Salt Lake City, UT, October 20−24, 2002 (Abstract No. 200).
- H. Mao, J.N. Reimers, U.S. Patent 5,964,902 (1999).
- H. Mao, U.V. Sacken, J.N. Reimers, U.S. Patent 5,891,592 (1999).
- G.H.Newman, R.W.Francis, L.H.Gaines, B.M.L.Rao. Hazard Investigations of LiC104/Dioxolane Electrolyte // J.Electrochem.Soc. 1980. — V.127. — № 9. — P. 20 252 027.
- U. Heider, M. Schmidt, A. Amann, M. Niemann, K. Marlies, A. Kuhner, U.S. Patent 6,548,212 (2003).
- K. Xu, S.S. Zhang, T.R. Jow, W. Xu, C.A. Angell. LiBOB as Salt for Lithium-Ion Batteries: A Possible Solution for High Temperature Operation // Electrochem. Solid-State Lett. 2002. — V.5. — № 1. — P. A26-A29.
- K. Xu, S.S. Zhang, BA. Poese, T.R. Jow. Lithium Bis (oxalato)borate Stabilizes Graphite Anode in Propylene Carbonate // Electrochem. Solid-State Lett. 2002. — V.5. -№ 11.-P. A259-A262.
- G.V. Zhuang, K. Xu, T.R. Jow, P.N.J. Ross. Study of SEI Layer Formed on Graphite Anodes in PC/LiBOB Electrolyte Using IR Spectroscopy // Electrochem. Solid-State Lett. 2004. — V.7. -r № 8. — P. A224-A227.
- K. Xu, U. Lee, S.S. Zhang, M. Wood, T.R. Jow. Chemical Analysis of Graphite/Electrolyte Interface Formed in LiBOB-Based Electrolytes// Electrochem. Solid-State Lett. 2003. — V.6. — № 7. — P. A144-A148.
- S.S. Zhang, K. Xu, T.R. Jow. Enhanced performance of natural graphite in Li-ion battery by oxalatoborate coating // J. Power Sources. 2004. — V.129. — № 2. — P.275−279.
- S.S. Zhang, K. Xu, T.R. Jow. LiBOB-based gel electrolyte Li-ion battery for high temperature operation //J. Power Sources. 2006. — V. 154. — № 1. — P.276−280.
- S.S. Zhang. An unique lithium salt for the improved electrolyte of Li-ion battery // Electrochem. Commiin. 2006. — V.8. — № 9. — P. 1423−1428.
- S.S. Zhang, K. Xu, T.R. Jow. Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB // J. Power Sources. 2006. -V.156. -№ 2. -P.629−633.
- K. Xu, S.S. Zhang, T.R. Jow. LiBOB as Additive in LiPF6-Based Lithium Ion Electrolytes // Electrochem. Solid-State Lett. 2005. — V.8. — № 7. — P. A365-A368.
- R.D. Rauh, S.B. Brunner. The effect of additives on lithium cycling in propylene carbonate // Electrochim. Acta. 1977. — V.22. — № 1. — P.75−83.r
- M.W.Wagner, C. Liebenow, J.O. Besenhard. Effect of polysulfide-containingelectrolyte on the film formation of the negative electrode // J. Power Sources 1997. -V.68. — № 2. — P.328−332.
- T. Osaka, T. Momma, T. Tajima, Y. Matsumoto. Enhancement of Lithium Anode Cyclability in Propylene Carbonate Electrolyte by C02 Addition and Its Protective Effect Against H20 Impurity // J. Electrochem. Soc. 1995. — V.142. — № 4. — P. 1057−1060.
- T. Osaka, T. Momma, Y. Matsumoto, Y. Uchida. Surfacc Characterization of Electrodeposited Lithium Anode with Enhanced Cycleability Obtained by C02 Addition // J. Electrochem. Soc. 1997. — V. 144. — № 5. — P. 1709−1713.
- K.M. Abraham, J.S. Foos, J.L. Goldman. Long Cycle-Life Secondary Lithium Cells Utilizing Tetrahydrofuran // J. Electrochem. Soc. 1984. — V. 131. — № 9. — P.2197−2199.
- M. Morita, S. Aoki, Y. Matsuda. ac imepedance behaviour of lithium electrode in organic electrolyte solutions containing additives // Electrochim. Acta. 1992. — V.37. -№ 1. — P. l 19−123.
- M. Ishikawa, M. Morita, Y. Matsuda. In situ scanning vibrating electrode technique for lithium metal anodes//J. Power Sources. 1997. — V.68. — № 2. — P.501−505.
- T. Hirai, I. Yoshimatsu, J.I. Yamaki. Effect of Additives on Lithium Cycling Efficiency//J. Electrochem. Soc. 1994. — V.141. -№ 9. — P.2300−2305.
- E. Eweka, J.R. Owen, A. Ritchie. Electrolytes and additives for high efficiency lithium cycling // J. Power Sources. 1997. — V.65. — № 1−2. — P.247−251.
- A.T. Ribes, P. Beaunier, P. Willmann, D. Lemordant. Correlation between cycling efficiency and surface morphology of electrodeposited lithium. Effect of fluorinated surface active additives // J. Power Sources. 1996. — V.58. — № 2. — P. 189−195.
- G. Nagasubramanian, D. Doughty. Improving the interfacial resistance in lithium cells with additives // J. Power Sources. 2001. — V.96. — № 1. — P.29−32.
- S. Shiraishi, K. Kanamura, Z.I. Takehara. Surface Condition Changes in Lithium Metal Deposited in Nonaqueous Electrolyte Containing HF by Dissolution-Deposition Cycles // J. Electrochem. Soc. 1999. -V.146.-№ 5.-P.1633−1639.
- E. Peled. The Electrochemical Behavior of Alkali and Alkaline Earth Metals in
- Nonaqueous Battery Systems The Solid Electrolyte Interphase Model // J. Electrochem. Soc. — 1979. — V. 126. — № 12. — P.2047−2051.
- K. Kanamura, S. Shiraishi, Z.I. Takehara. Electrochemical Deposition of Uniform Lithium on an Ni Substrate in a Nonaqueous Electrolyte // J. Electrochem. Soc. 1994. -V.141. -№ 9. -P. L108-L110.
- K. Kanamura, S. Shiraishi, Z.I. Takehara. Electrochemical Deposition of Very Smooth Lithium Using Nonaqueous Electrolytes Containing HF // J. Electrochem. Soc. 1996. -V.143. -№ 7. -P.2187−2197.
- M. Ishikawa, H. Kawasaki, N. Yoshimoto, M. Morita. Pretreatment of Li metal anode with electrolyte additive for enhancing Li cycleability // J. Power Sources. 2005. -V.146. -№ 1−2. — P.199−203.
- Fujieda T, Yamamoto N, Saito K, Ishibashi T, Honjo M, Koike S, Wakabayashi N, Higuchi S. Surface of Lithium electrodes prepared in Ar + С02 gas // J. Power Sources. -1994. V.52. — № 2. — P. 197−200.
- Gan H, Takeuchi ES. Lithium electrodes with and without C02 treatment: Electrochemical behavior and effect on high rate lithium battery performance // J. Power Sources. 1996. — V.62. — № 1. — P.45−50.
- Dafert R., Miklauz R. Mh. Chemie. 1910. — V.31. — P. 981.
- Славянский M. П. Физико-химические свойства элементов. Москва. Металлургиздат. — 1952.
- Шамрай Ф. И. Литий и его сплавы. Москва. Изд-во АН СССР. — 1952.
- Rabenau A., Schulz. Re-evaluation of the lithium nitride structure // J. Less.-Common Metals. 1976. — V.50. -№ 1. — P. 155−159.
- J. G. Thcvenin, R. H. Muller. Study of the Li/Li3N Electrode in an Organic Electrolyte //J. Electrochem. Soc. 1987. — V. 134.-№ 11.-P.2650−2656.
- Patent of New Brunswick Telephone Co. № EP 281 352. Lithium-lithium nitride anode / Desjardins D. C- Sharifian H.- Maclean G. K. European Patent Office (Sept. 1988)
- Берлин A.A., Кефели Т. Я., Королев Г. В. Полиэфиракрилаты. Москва. Наука. -1967.-372 с.
- Розенберг Б.А., Богданова Л. М., Бойко Г. Н., Гурьева Л. Л., Джавадян Э. А., Сурков Н. Ф., Эстрина Г. А., Эстрин Я. И. «Синтез новых полиэфирди(мет)акрилатовна основе гидроксиалкил (мет)акрилатов» // Высокомолек. соед., сср. А. 2005. -Т.47. — № 6. — С.952−960.
- Г. А.Эстрина, Б. А, Комаров, Я. И. Эстрин, Б. А. Розенберг. «Хроматографическое исследование анионной олигомеризации 2-гидроксиэтил (мет)акрилатов» // Высокомолекулярные соединения. Серия А. 2004. — Т.46. — № 6. — С.207−216.
- Б.М. Графов, Е. А. Укше.// Электрохимия. 1974. — Т.10. — С. 1875.
- Е.А. Укше, Н. Г. Букун. Твердые электролиты. М. Наука. 1977. — 175 с.
- Bolleter W. Т., Bushman С. J., Tidwell P. W., Analyt. Chem. 1961. — V.33. -Р.592.
- Rommers P. J., Visser. // J. Analyst. 1969. — V.94. — P.653.
- Scheurer P. G., Smith F., Analyt. Chem. 1955. — V.27. -P.1616.
- Хираока M. Краун-соединения. Свойства и применения. Москва. Мир. 1986. -363 с.
- Ярмоленко О.В.,' Укше А. Е., Мовчан Т. И., Ефимов О. Н., Зуева А. Ф. Синтез и исследование новых композиционных твердых электролитов на основе полиэтиленоксида, оксидов алюминия и краун-эфира // Электрохимия. 1995. -Т.31. С.388−393.
- Ярмоленко О.В., Ефимов О. Н., Котова А. В., Матвеева И. А. Новые пластифицированные электролиты на основе олигоуретанметакрилата и монометакрилат полипропиленглиголя // Электрохимия. — 2003. — Т.39. — № 5. — С. 571−577.
- Ярмоленко О.В., Ефимов О. Н. Влияние дибензо-18-краун-6 на поведение границы полимерный электролит литиевый анод // Электрохимия. — 2005. — Т.41. — № 5. — С.646−650.
- Киреева И.К., Иканова И. О., Миначева Л. Х., Цивидзе А.Ю.// Координац. химия. 1996. Т. 22 (4). С. 406.
- Педерсен К.Д., Френсдорф Х. К. Успехи химии. 1973. Т. 42. С. 493.
- Химическая энциклопедия, под ред. Кнунянц И. Л. Москва. Советскаяэнциклопедия. 1990. — Т.2. — С.1201−1203.
- Самсонов Г. В. Нитриды. Киев. Наукова думка. 1969. — С.81−85.
- Torben Lapp, Steen Skaarup, Alan Hooper. Ionic conductivity of pure and doped Li3N // Solid State Ionics. 1983. — V. l 1. — № 2. — P.97−103.
- Rabenau A., Schulz H. Re-evaluation of the lithium nitride structure // J. Less.-Common. Metals. 1976.- V.50.-№ 1. -P.155−159.
- Баскакова Ю.В., Ярмоленко O.B., Шувалова Н. И., Тулибаева Г. З., Ефимов О. Н. Влияние 15-краун-5 на сопротивление переноса заряда на границе полимерный электролит модифицированный Li-электрод // Электрохимия. — 2006. — Т.42. -№ 9. — С.1055−1059.
- M.D. Paulsen, B.P. Hay. Conformational analysis of crown ethers. Part 3. Alkali and alkaline earth cation complexes of 15-crown-5 // J. Mol. Struct. (Theochem). 1998. — V.429. — P.49−59.
- A.E. Howard, U.C. Singh, M. Billeter, P.A. Kollman. // J. Am. Chem. Soc. -1988. -V.l 10.-6984.
- S.E. Hill, D. Feller. Theoretical study of cation/ether complexes: 15-crown-5 and its alkali metal complexes // Int. J. Mass. Spectrom. 2000. — V.201. — № 1−3. — P.41−58.
- P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett 1996. V.77. — P.3865.
- W.J. Stevens, H. Basch, M. J Krauss. Chem. Phys. 1984. — V.81. — P.6026.
- D.N.Laikov. Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets // Chem. Phys. Lett. 1997. -V.281. -№ 1−3. -P.151−156.
- Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegcl, et al. Gaussian, Inc. Wallingford CT. 2004.
- R.J. Papoular, H. Allouchi, A. Chagnes, A. Dzyabchenko, B. Carre, D. Lemordant, V. Agafonov. // Acta Cryst. B. 2005. — V.61. — P.312.
- M.D. Paulsen, J.R. Rustad, B.P. Hay. Conformational analysis of crown ethers part 2. 15-crown-5 //J. MoL Struct.(Theochem). — 1997. — V.397.-P.l-12.
- S. Parsons. Acta Cryst. E. -2007. -V.63. -Р.ОЗ 130.
- H. Abdoul-Carime. J. Chem. Soc., Faraday Trans. 1998. — V.94(16). — P.2407−2410
- S.Maleknia, J. Brodbelt, J. Am. Chem. Soc. 1992.-V.114.-P.4295−4298.
- A. A. El-Azhary, A. A. Al-Kahtani. // J. Phys. Chem. A. 2004. — V.108. — № 44. -P.9601−9607
- A. A. El-Azhary, A. A. Al-Kahtani. // J. Phys. Chem. A. 2005. — V.109. — № 35. -P.8041−8048
- D. Ray, D. Feller, M. B. More, E. D. Glendening, P. B. Armentrout. // J. Phys. Chem. -1996.-V. 100.-№ 40.- P. 16 116−16 125
- R. Boulatov, B. Du, E. A. Meyers, S. G. Shore. //Inorg. Chem. 1999. — V.38. — № 20. — P.4554−4558
- B. Temelso, C.D. Sherrill. High accuracy ab initio studies of+, Li6″, and three isomers of Li6 // J. Chem. Phys. 2005. — V.122. — P.64 315−1-64 315−11.
- R.J. Papoular, II. Allouchi, A. Chagnes, A. Dzyabchenko, B. Carre, D. Lcmordant, V. Agafonov, Acta Cryst. B. 2005. — V.61. — P.312.
- J.J.K.V., S.R.Gadre. Electrostatic guidelines and molecular tailoring for density functional investigation of structures and energetics of (Li)n clusters // J. Chem. Phys. -2008. V.129. — P.164 314−1-164 314−10.
- JI.B. Гурвич, И. В. Вейц, В. А. Медведев. Термодинамические свойства индивидуальных веществ. Справочное издание. Москва. Наука. 1978. — Т. 1. — Кн. 2.-328 с.
- Tissandier M.D., Cowen К.А., Feng W.Y., Gundlach E., Cohen M.H., Earhart A.D., Сое J.V., Tuttle Jr.T.R., J. Phys. Chem. A. 1998. -V. 102. — P.7787−7794.
- Пикаев A.K. Современная радиационная химия. Москва. Наука. 1986. — 440 с.
- D.Aurbach, in W.A. Schalkwijk, В. Scrosati (Ed.). Advances in Lithium-Ion Batteries. Kluwer academic publishers. New York, Boston, Dordrecht, London, Moscow. 2002. -P.7−79.