Помощь в написании студенческих работ
Антистрессовый сервис

Химический состав и биологическая активность хиноидных и полифенольных соединений из дальневосточных растений Lithospermum erythrorhizon, Eritrichium sericeum, Maackia amurensis, Vitis amurensis, Taxus cuspidata и их клеточных культур. 
Препарат максар из

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Объектами настоящего исследования явились редкие и ценные растения дальневосточной флоры. Выбор растений был произведен на основе литературных данных и личного опыта с учетом основного критерия возможности их использовать для создания оригинальных отечественных препаратов. В итоге для углубленного исследования отобрано 5 перспективных видов растений — Lithospermum erythrorhizon Sieb. et Zucc… Читать ещё >

Химический состав и биологическая активность хиноидных и полифенольных соединений из дальневосточных растений Lithospermum erythrorhizon, Eritrichium sericeum, Maackia amurensis, Vitis amurensis, Taxus cuspidata и их клеточных культур. Препарат максар из (реферат, курсовая, диплом, контрольная)

Содержание

  • ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ
  • 1. ЛИТЕРАТУРНЫЙ ОБЗОР
    • 1. 1. Хиноидные соединения растений сем. Вогадтасеае
      • 1. 1. 1. Введение в историю алканнина и шиконина----'
      • 1. 1. 2. Установление строения алканнина и шиконина
      • 1. 1. 3. Природные производные алканнина и шиконина и методы их идентификации
      • 1. 1. 4. Новые источники получения производных шиконина
      • 1. 1. 5. Биосинтез шиконина
      • 1. 1. 6. Биологическая активность изогексенилнафтазаринов
        • 1. 1. 6. 1. Ранозаживляющие и противовоспалительные свойства изогексенилнафтазаринов
        • 1. 1. 6. 2. Антимикробная и противовирусная активности изогексенилнафтазаринов
        • 1. 1. 6. 3. Молекулярные механизмы антимикробных, противовоспалительных свойств ИГН при ранозаживлении
        • 1. 1. 6. 4. Противоопухолевая активность ИГН
        • 1. 1. 6. 5. Клинические исследования изогексенилнафтазаринов
        • 1. 1. 6. 6. Пролиферативный эффект алканнина и шиконина
    • 1. 2. Полифенольные соединения растений сем. Вогадтасеае
      • 1. 2. 1. Розмариновая кислота и ее производные
      • 1. 2. 2. Биологическая активность метаболитов кофейной кислоты
      • 1. 2. 3. Биосинтез розмариновой кислоты
    • 1. 3. Изофлавоноиды
      • 1. 3. 1. Структурные типы флавоноидов
      • 1. 3. 2. Структурные типы изофлавоноидов
      • 1. 3. 3. Номенклатура изофлавоноидов
      • 1. 3. 4. Распространение изофлавоноидов
      • 1. 3. 5. Способы выделения и сохранение нативности изофлавоноидов
      • 1. 3. 6. Биосинтез изофлавоноидов
      • 1. 3. 7. Биологическая активность изофлавоноидов
        • 1. 3. 7. 1. Фитоэстрогенные свойства изофлавоноидов
        • 1. 3. 7. 2. Рецепторы эстрогена
        • 1. 3. 7. 3. Гормональная заместительная терапия изофлавоноидами
        • 1. 3. 7. 4. Защитный эффект фитоэстрогенов против атеросклероза
        • 1. 3. 7. 5. Кардиопротекторное действие изофлавоноидов
        • 1. 3. 7. 6. Противоопухолевая активность изофлавоноидов
        • 1. 3. 7. 7. Эффективность изофлавонов в предотвращении остеопороза
        • 1. 3. 7. 8. Антиоксидантные свойства изофлавоноидов
        • 1. 3. 7. 9. Гепатопротективные, противовоспалительные и антиалкогольные свойства изофлавоноидов
        • 1. 3. 7. 10. Антимикробная активность 67 изофлавоноидов
      • 1. 3. 8. Биосинтез изофлавоноидов клеточными культурами растений
      • 1. 3. 9. Химический состав и биологическая активность полифенолов из 70 МаасМа атигепэ’гз
        • 1. 3. 9. 1. Гепатопротекторы природного происхождения
        • 1. 3. 9. 2. Гепатопротективные свойства полифенолов Маас/с/а атигепБ!^
        • 1. 3. 9. 3. Результаты клинических исследований препарата максар опубликованные в литературе
    • 1. 4. Стильбены
      • 1. 4. 1. Структурная классификация стильбенов
      • 1. 4. 2. Распространение стильбенов
      • 1. 4. 3. Биосинтез стильбенов
      • 1. 4. 4. Олигомеры резвератрола из корней Vitis amurensis
      • 1. 4. 5. Биологическая активность стильбенов
        • 1. 4. 5. 1. Нейропротекторная, антиоксидантная и противовоспалительная 88 активность резвератрола
        • 1. 4. 5. 2. Кардиопротекторная активность резвератрола
        • 1. 4. 5. 3. Противоопухолевая активность резвератрола и родственных 90 стильбенов
        • 1. 4. 5. 4. Гепатопротективная активность стильбенов
      • 1. 4. 6. Содержание резвератрола и родственных стильбенов в растениях 93 и их клеточных культурах
    • 1. 5. Метаболиты Taxus cuspidata
      • 1. 5. 1. Противоопухолевые таксановые дитерпеноиды
        • 1. 5. 1. 1. Строение и номенклатура таксановых дитерпеноидов
        • 1. 5. 1. 2. Таксановые дитерпеноиды Taxus cuspidata
        • 1. 5. 1. 3. Биологическая активность таксановых дитерпеноидов
      • 1. 5. 2. Лигнаны
        • 1. 5. 2. 1. Строение и распространение в природе
        • 1. 5. 2. 2. Номенклатура лигнанов
        • 1. 5. 2. 3. Лигнаны рода Taxus
        • 1. 5. 2. 4. Биологическая активность лигнанов
        • 1. 5. 2. 5. Биосинтез лигнанов
  • 2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
    • 2. 1. Введение
    • 2. 2. Культура клеток Lithospermum erythrorhizon
      • 2. 2. 1. Получение клеточной культуры ВК-39 Lithospermum erythrorhizon ¦
      • 2. 2. 2. Состав хиноидных соединений в клеточной культуре ВК-39 119 Lithospermum erythrorhizon
      • 2. 2. 3. Содержание ИГН и ИГБФ в клеточных культурах Lithospermum 122 erythrorhizon
      • 2. 2. 4. Регуляция процессов роста и биосинтеза вторичных метаболитов 125 в клеточной культуре ВК
      • 2. 2. 5. Повышение продукционных характеристик штамма ВК-39 посредством стимуляции шикимат-фенилаланинового 127 биосинтетического пути
      • 2. 2. 6. Содержание хиноидных пигментов в клеточных культурах при их 131 выращивании в промышленных условиях
      • 2. 2. 7. Препарат «Масло шикониновое»
        • 2. 2. 7. 1. Фармакологическая активность препарата «Масло шикониновое»
        • 2. 2. 7. 2. Терапевтическая эффективность препарата «Масло 135 шикониновое»
    • 2. 3. Полифенолы клеточных культур и растений Eritrichium sericeum и
  • Lithospermum erythrorhizon
    • 2. 3. 1. Выделение и установление структуры олигомеров кофейной кислоты из клеточных культур Eritrichium sericeum и Lithospermum erythrorhizon
    • 2. 3. 2. Определение содержания олигомеров кофейной кислоты в клеточных культурах Eritrichium sericeum и Lithospermum erythrorhizon методом ВЭЖХ
    • 2. 3. 3. Продукция олигомеров кофейной кислоты в трансформированных клеточных культурах Eritrichium sericeum и Lithospermum 146 erythrorhizon
    • 2. 3. 4. Получение высокопродуктивной каллусной культуры Eritrichium 147 sericeum методом селекции
    • 2. 3. 5. Антиоксидантная активность розмариновой кислоты и (-) — 149 рабдозиина
    • 2. 3. 6. Фармакологическая активность препаратов из биомассы 150 клеточных культур Eritrichium sericeum и Lithospermum erythrorhizon
      • 2. 3. 6. 1. Влияние ПН на крыс с гломерулонефритом
      • 2. 3. 6. 2. Влияние препаратов воробейника и незабудочника на 152 экскреторную функцию почек у крыс
      • 2. 3. 7. Влияние препаратов ПВ и ПН из клеточных культур Lithospermum erythrorhizon и Eritrichium sericeum на развитие экспериментального 153 воспаления
      • 2. 3. 7. 1. Антимикробная активность препарата из клеточной культуры 155 Eritrichium sericeum
    • 2. 4. Полифенольные соединения из древесины Maackia amurensis
      • 2. 4. 1. Выделение и установление строения мономерных полифенолов 156 из древесины Maackia amurensis
      • 2. 4. 2. Выделение и установление строения олигомерных полифенолов 161 из древесины Maackia amurensis
      • 2. 4. 3. ВЭЖХ анализ спиртового экстракта древесины Maackia amurensis
      • 2. 4. 4. Изучение стереохимии полифенолов Maackia amurensis методом 167 рентгеноструктурного анализа
    • 2. 5. Изофлавоноиды из клеточной культуры Maackia amurensis
      • 2. 5. 1. Клеточные культуры Maackia amurensis
      • 2. 5. 2. Установление структуры 6'-0-малонил-3−0-(3−0-глюкопиранозил- 177 6,6а-дегидромаакиаина
      • 2. 5. 3. Кислотный гидролиз суммарного спиртового экстракта клеточной 184 культуры Maackia amurensis
      • 2. 5. 4. Биосинтез изофлавоноидов в клеточной культуре А-18 Maackia 185 amurensis
    • 2. 6. Фармакологическая активность препаратов из ядровой древесины и клеточной культуры Maackia amurensis
      • 2. 6. 1. Гепатопротекторные свойства полифенолов Maackia amurensis
        • 2. 6. 1. 1. Сравнительная оценка гепатопротективных свойств полифенолов из древесины и клеточной культуры Maackia 189 amurensis
        • 2. 6. 1. 2. Влияние гепатопротекторов растительного происхождения на эффекты преднизолона при экспериментальном токсическом 193 гепатите
        • 2. 6. 1. 3. Лечебное действие максара при экспериментальном синдроме 195 Рейе
      • 2. 6. 2. Антиоксидантные свойства полифенолов Maackia amurensis
        • 2. 6. 2. 1. Сравнительная оценка антиоксидантных свойств полифенолов 196 из древесины и клеточной культуры Maackia amurensis
        • 2. 6. 2. 2. Сравнительная оценка влияния полифенолов из древесины и клеточной культуры Maackia amurensis на развитие 198 экспериментального воспаления
        • 2. 6. 2. 3. Антиоксидантное действие препарата максар при экспериментальном диабете
        • 2. 6. 2. 4. Влияние препарата максар на состояние антиоксидантной системы у крыс с алиментарной гиперлипопротеинемией На типа
      • 2. 6. 3. Антитромбогенные и антитромбоцитарные свойства полифенолов 206 Maackia amurensis при овариоэктомии у крыс
        • 2. 6. 3. 1. Влияние полифенолов Maackia amurensis на перекисное окисление липидов в мембранах эритроцитов после 210 овариоэктомии у крыс
      • 2. 6. 4. Краткий обзор проведенных доклинических исследований 211 препарата максар
        • 2. 6. 4. 1. Экспериментальное изучение специфической гепатозащитной и желчегонной активности сухого экстракта Maackia amurensis 211 (максар)
        • 2. 6. 4. 2. Экспериментальное исследование сухого экстракта Maackia 213 amurensis (максар), характеризующее его безвредность
        • 2. 6. 4. 3. Противоопухолевые свойства сухого экстракта Maackia 214 amurensis (максар)
      • 2. 6. 5. Антимикробная активность полифенолов из древесины и 216 клеточной культуры Maackia amurensis
    • 2. 7. Обобщенный анализ результатов исследований клинической эффективности и безопасности лекарственного средства «Максар®- 218 таблетки, покрытые оболочкой 60 мг»
      • 2. 7. 1. Программа клинических испытаний
      • 2. 7. 2. Проведенные исследования по изучению клинической 219 эффективности и безопасности препарата максар
      • 2. 7. 3. Оценка эффективности препарата максар на основании 219 клинических отчетов
      • 2. 7. 4. Опубликованные результаты клинических исследований 220 препарата максар
      • 2. 7. 5. Обобщенный анализ результатов безопасности препарата максар
      • 2. 7. 6. Инструкция по медицинскому применению препарата МАКСАР®
    • 2. 8. Разработка нормативно-технической документации на препарат
  • Максар®-«
    • 2. 8. 1. Опытно-промышленный регламент на производство субстанции 226 «Маакии амурской экстракт сухой»
    • 2. 8. 2. Пусковой регламент на производство «Максар®- таблетки, 228 покрытые оболочкой, 60 мг»
    • 2. 8. 3. Стандартизация препарата максар
      • 2. 8. 3. 1. ФСП «Маакии амурской древесина ангро»
      • 2. 8. 3. 2. ФСП «Маакии амурской экстракт сухой»
      • 2. 8. 3. 3. ФСП «Максар®- таблетки, покрытые оболочкой, 60 мг»
      • 2. 8. 4. Государственная регистрация препарата максар
      • 2. 8. 5. Промышленные выпуски препаратов
    • 2. 9. Полифенолы из стеблей и клеточных культур Vitis amurensis
      • 2. 9. 1. Полифенолы из стеблей Vitis amurensis
      • 2. 9. 2. Клеточные культуры Vitis amurensis
    • 2. 10. Таксановые дитерпеноиды из клеточной культуры Taxus cuspidata
    • 2. 11. Лигнаны и катехины Taxus cuspidata
      • 2. 11. 1. Выделение лигнанов и катехинов из Taxus cuspidata
      • 2. 11. 2. Содержание лигнанов и катехинов в Taxus cuspidata
      • 2. 11. 3. Антиоксидантная и антирадикальная активности полифенолов из 259 Taxus cuspidata
  • 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
    • 3. 1. Приборы и оборудование
    • 3. 2. Препаративная хроматография
    • 3. 3. Аналитическая хроматография
      • 3. 3. 1. Аналитическая ТСХ хиноидных соединений
      • 3. 3. 2. Определения полифенольных соединений методом ТСХ
      • 3. 3. 3. Аналитическая ВЭЖХ
      • 3. 3. 4. Подготовка стандартного образца для ВЭЖХ
      • 3. 3. 5. Подготовка проб для проведения анализа методом ВЭЖХ
      • 3. 3. 6. Определение относительных времен удерживания и поправочных 267 коэффициентов индивидуальных соединений
      • 3. 3. 7. Аналитическая ВЭЖХ для анализа хиноидных соединений из 267 клеточных культур и растения Lithospermum erythrorhizon
      • 3. 3. 8. Аналитическая ВЭЖХ для анализа полифенольных соединений из Lithospermum erythrorhizon и Eritrichium sericeum и их клеточных 268 культур
      • 3. 3. 9. Аналитическая ВЭЖХ хроматографических фракций и экстрактов 268 из клеточных культур и древесины Maackia amurensis
      • 3. 3. 10. Аналитическая ВЭЖХ экстрактов из растения и клеточной 269 культуры Taxus cuspidata
      • 3. 3. 11. Аналитическая ВЭЖХ экстрактов из растения и клеточных 269 культур Vitis amurensis
    • 3. 4. Биологический материал
      • 3. 4. 1. Культура клеток воробейника краснокорневого
      • 3. 4. 2. Получение резистентной к 4-фторфенилаланину (4-ФФА) 271 клеточной культуры BK-39F
      • 3. 4. 3. Получение клеточной культуры Eritrichium sericeum
      • 3. 4. 4. Состав питательных сред для выращивания культур корней и 272 каллусов Eritrichium sericeum
      • 3. 4. 5. Получение контрольных и rolC-трансгенных клеточных культур 272 Eritrichium sericeum и Lithospermum erythrorhizon
      • 3. 4. 6. Культивирование клеточных культур Maackia amurensis
      • 3. 4. 7. Культивирование клеточных культур Vitis amurensis
      • 3. 4. 8. Методы культивирования клеточных культур Taxus cuspidata
    • 3. 5. Препаративное выделение хиноидных пигментов из клеточной культуры Lithospermum erythrorhizon
      • 3. 5. 1. Выделение нафтохинонов из клеточной культуры ВК
      • 3. 5. 2. Щелочной гидролиз суммарного экстракта пигментов из Lithospermum erythrorhizon
      • 3. 5. 3. Выделение изогексенилбензохинонилфуранов из клеточной 279 культуры ВК
      • 3. 5. 4. Щелочной гидролиз изогексенилбензохинонилфуранов
    • 3. 6. Препаративное выделение олигомеров кофейной кислоты из клеточных культур Eritrichium sericeum и Lithospermum erythrorhizon
    • 3. 7. Фармакологическая активность препаратов из клеточных культур
  • Lithospermum erythrorhizon, Eritrichium sericeum
    • 3. 7. 1. Влияние препаратов из клеточных культур Lithospermum 282 erythrorhizon и Eritrichium sericeum на функцию почек у крыс
    • 3. 7. 2. Влияние препарата из клеточной культуры Eritrichium sericeum на 282 течение экспериментального гломерулонефрита
    • 3. 7. 3. Противовоспалительная активность препаратов из клеточных 283 культур Lithospermum erythrorhizon и Eritrichium sericeum
    • 3. 7. 4. Определение антимикробной активности препарата из клеточной 284 культуры Eritrichium sericeum
    • 3. 8. Выделение полифенольных соединений из ядровой древесины
  • Maackia amurensis
    • 3. 8. 1. Выделение мономерных полифенолов из древесины Maackia 285 amurensis
    • 3. 8. 2. Выделение олигомерных полифенолов из древесины Maackia 290 amurensis
    • 3. 9. Выделение и идентификация изофлавоноидов из клеточной культуры А-18 Maackia amurensis
    • 3. 9. 1. Экстракция и хроматография изофлавоноидов из клеточной 294 культуры Maackia amurensis
    • 3. 9. 2. Кислотный гидролиз суммы изофлавоноидов клеточной культуры 299 Maackia amurensis
    • 3. 10. Фармакологическая активность ПФК из клеточной культуры и 299 ядровой древесины Maackia amurensis
    • 3. 10. 1. Методы определения гепатопротективной активности полифенолов из древесины и клеточной культуры Maackia 299 amurensis
    • 3. 10. 2. Определение антиоксидантной активности полифенолов из 300 ядровой древесины и клеточной культуры Maackia amurensis
    • 3. 10. 3. Метод определения антиоксидантной активности сухого экстракта маакии амурской (максар) при экспериментальном 301 диабете
    • 3. 10. 4. Метод определения антиоксидантной активности сухого экстракта маакии амурской (максар) у крыс с алиментарной 302 гилерлипопротеинемией Па типа
    • 3. 10. 5. Определение антитромбогенной и антитромбоцитарной 302 активности сухого экстракта маакии амурской
    • 3. 10. 6. Метод определения противоопухолевой активности сухого 304 экстракта маакии амурской (максар)
    • 3. 10. 7. Метод определения антимикробной активности препарата 305 максар
    • 3. 10. 8. Методы определения биохимических показателей в крови и 306 печени животных
    • 3. 11. Полифенолы из клеточной культуры и стеблей Vitis amurensis
    • 3. 12. Выделение таксановых дитерпеноидов из клеточной культуры 309 Taxus cuspidata
    • 3. 13. Лигнаны и катехины из Taxus cuspidata
    • 3. 13. 1. Выделение лигнанов и катехинов из Taxus cuspidata
    • 3. 13. 2. Определение антирадикальной активности полифенолов из 313 Taxus cuspidata
    • 3. 13. 3. Определение антиоксидантной активности полифенолов из 313 Taxus cuspidata

Изучение и практическое применение природных соединений имеют большое значение для укрепления здоровья и увеличения продолжительности жизни людей. Действительно, биомолекулы, химические структуры и биологические функции, которых изучает биоорганическая химия, используются в качестве биологически активных субстанций лекарств и ценных пищевых компонентов. На протяжении многих лет и до настоящего времени основными источниками новых природных соединений были и остаются высшие наземные растения. Многие из них биосинтезируют метаболиты, обладающие выдающейся биологической активностью. Признано, что растения являются основным источником биологического материала при производстве многих лекарственных препаратов.

В последнее время доказано, что многие патологические состояния животных и человека вызываются нарушением нормального уровня свободных радикалов в их органах и тканях. Это в полной мере относится к естественному процессу старения, сердечнососудистым заболеваниям, воспалительным явлениям, ожогам и, прямо или косвенно, к онкологическим заболеваниям. В современной клинической практике коррекция подобных нарушений нередко выполняется применением экзогенных антиоксидантов полифенольной природы, благодаря чему полифенольные и хиноидные соединения природного происхождения стали в настоящее время важными объектами для изучения их структур и биомедицинских исследований. Весьма существенным является и то, что природные полифенольные антиоксиданты не только являются защитой организма от окислительного стресса путем нейтрализации активных форм кислорода, но и могут регулировать окислительно-восстановительные свойства клеток или их компонентов и, таким образом, защищать клетки от старения. Повсеместное распространение полифенольных соединений в растениях, достаточно хорошая изученность некоторых из них, низкая токсичность и высокая фармакологическая активность привели к созданию ряда лекарственных препаратов на их основе.

Природные ресурсы Российского Дальнего Востока предоставляют широкие возможности для получения разнообразных антиоксидантов и их композиций, прежде всего из лекарственных растений. Разработка новых лекарственных средств на основе дальневосточных растений, в первую очередь способных усиливать регенеративные процессы в печени, и внедрение их в широкую медицинскую практику приобрели особую социальную значимость. Сегодня большинство зарегистрированных в Российской Федерации препаратов данной группы являются импортными и, вследствие высокой стоимости, малодоступными для населения. Это обусловливает создание эффективных, малотоксичных отечественных гепатопротективных средств на основе природных антиоксидантов полифенольной природы, устраняющих основное звено патогенеза токсического гепатита — усиление перекисного окисления липидов, и улучшающих антитоксическую и экскреторную функции гепатоцитов.

С другой стороны, поскольку вследствие интенсивного и нерегулируемого сбора растительного сырья его запасы в природе истощаются, все большее значение приобретают биотехнологические способы получения ценных природных веществ, в том числе методы клеточной биотехнологии. Клетки растений можно выращивать в искусственных условиях на питательных средах неограниченно долго, при этом часть полученной биомассы используют для экстракции целевых продуктов, а другую часть пересаживают на свежую питательную среду для возобновления культуры. Независимость от влияния различных факторов окружающей среды (климат, сезон, погода, почвенные условия, вредители), а нередко и более высокий выход и хорошее качество продукта делают эту технологию привлекательной. В настоящее время происходит развитие новых методов биотехнологии клеточных культур растений. Одним из первых примеров практического применения такого подхода стал биосинтез в промышленном масштабе эфиров шиконина клеточными культурами ИМоБрегтит егуШогЫгоп, осуществленный в Японии и в нашей стране.

Считается, что биотехнология клеточных культур растений поможет решить проблему сохранения в природе редких^ видов растений, а также создаст реальную возможность для разработок новейших методов получения наиболее ценных лекарственных веществ и, в конечном счете, новых медицинских препаратов. В условиях, когда постоянно падает доля лекарственных субстанций отечественного производства, представляется особенно важным развивать современные технологии, создающие надежную сырьевую базу для производства отечественных препаратов.

Объектами настоящего исследования явились редкие и ценные растения дальневосточной флоры. Выбор растений был произведен на основе литературных данных и личного опыта с учетом основного критерия возможности их использовать для создания оригинальных отечественных препаратов. В итоге для углубленного исследования отобрано 5 перспективных видов растений — Lithospermum erythrorhizon Sieb. et Zucc. и Eritrichium sericeum (Lehm.) A. DC. сем. Boraginaceae, Maackia amurensis Rupr. et Maxim, сем. Fabaceae, Vitis amurensis Rupr. сем. Vitaceae, Taxus cuspidata Sieb. et Zucc. сем. Taxaceae. Для каждого вида осуществлен тщательный химический анализ его компонентов и вместе с сотрудниками Биолого-почвенного института ДВО РАН предприняты попытки получить активно-растущие клеточные культурывоспроизводимые биотехнологические источники целевых хиноидных и/или полифенольных соединений. Большое внимание было уделено повышению продуктивности полученных клеточных культур растений и изучению фармакологической активности их метаболитов.

Цели и задачи исследования.

Целью работы являлось выделение, установление строения и исследование биологической активности природных полифенольных и хиноидных соединений из экстрактов дальневосточных растений Lithospermum erythrorhizon Sieb. et Zucc. (воробейник краснокорневой) и Eritrichium sericeum (Lehm.) A. DC. (незабудочник шелковистый) сем. Boraginaceae, Maackia amurensis Rupr. et Maxim, (маакия амурская) сем. Fabaceae, Vitis amurensis Rupr. (виноград амурский) сем. Vitaceae, Taxus cuspidata Sieb. et Zucc. (тис остроконечный) сем. Taxaceae и их клеточных культур, а также завершение разработки нового гепатопротективного лекарственного препарата «Максар®-' на основе полифенольного комплекса из ядровой древесины маакии амурской.

Для достижения этой цели были поставлены следующие задачи:

1) На основе полученных суммарных экстрактов из растений и их клеточных культур разработать методы выделения биологически активных соединений, выделить индивидуальные соединения и установить их химическое строение;

2) провести сравнительное изучение качественного состава и количественного соотношения полифенольных и хиноидных соединений в растениях и их клеточных культурах;

3) изучить биологическую активность препаратов из клеточных культур L. erythrorhizon, Е. sericeum и М. amurensis для определения перспективности их использования в косметике и медицине;

4) провести сравнительное изучение гепатопротективных, антиоксидантных и противовоспалительных свойств полифенольных комплексов из древесины М. атигепз18 и ее клеточной культуры;

5) определить антиоксидантную и антирадикальную активность полифенольных соединений из Т. сизр'1ба1а.

6) разработать с применением генно-инженерных методов и новых технологий подходы к увеличению биосинтеза биологически активных соединений культурами клеток;

7) разработать аналитические методы для установления подлинности и количественного определения активных компонентов в препаратах: «Маакии амурской древесина ангро», «Маакии амурской экстракт сухой», «Максар®таблетки, покрытые оболочкой, 60 мг» ;

8) разработать нормативную документацию на сырье, субстанцию и лекарственную форму препарата «Максар®-1;

9) осуществить регистрацию на территории Российской Федерации и промышленные выпуски препаратов: «Маакии амурской древесина ангро», «Маакии амурской экстракт сухой», «Максар®таблетки, покрытые оболочкой, 60 мг» .

1 ЛИТЕРАТУРНЫЙ ОБЗОР.

ВЫВОДЫ.

1. Показано, что клеточные культуры и корни иШоБрегтит егу1ЬгогЫгоп продуцируют одинаковый набор пигментов — 9 эфиров шиконина и 5 производных бензохинонилфурана, из которых пропионилшиконин, эхинофуран С, изобутирил-и изовалерилизогексенилбензохинонилфуран выделены впервые, а их структуры установлены.

2. На основе клеточной культуры ВК-39Р ?. егуШюгЫгоп, продуцирующей до 12.6% изогексенилнафтазаринов на сухой вес клеток, разработан способ получения препарата «Масло шикониновое», зарегистрированного в РФ как средство косметическое для наружного применения. Показана терапевтическая эффективность этого препарата при лечении рожистых воспалений.

3. Из растения ЕгИпсМит эепсеит и его клеточных культур Ег-1 и Е-4 выделены и идентифицированы полифенольные метаболиты: (-)-рабдозиин, розмариновая кислота и новый метаболит кофейной кислоты эритрихин. Структура эритрихина определена как (2Я?)-3-(3,4-дигидроксифенил)-2-[4-(3,4-дигидроксифенил)-6,7-дигидрокси-2-нафтоилокси]пропановая кислота. В отличие от Е. эегюеит, /. егуМгогЫгоп и его клеточная культура ВК-39 биосинтезируют (+)-энантиомер рабдозиина. Содержание рабдозиина и розмариновой кислоты в клеточных культурах воробейника и незабудочника превышает их содержание в растениях от 2 до 66 раз.

4. В условиях длительного применения препаратов из клеточных культур /. егуМгогМгоп (ПВ) и Е. вепсеит (ПН) в дозах 250 и 100 мг/кг/сутки в течение 14 суток установлено усиление экскреторной функции почек и угнетение экссудативной стадии воспаления у подопытных животных. Применение препарата ПН в дозе 100 мг/кг/сутки в течение 30 дней достоверно уменьшает развитие симптомов гломерулонефрита у крыс.

5. Установлено, что основными компонентами древесины Маас/с/а атигелв/з являются 27 растительных полифенолов, составляющих полифенольный комплекс препарата максар. К ним относятся изофлавоныгенистеин, даидзеин, каликозин, псевдобаптигенин, формононетин, оробол, афромозин, текторигенин, ретузин, 5-метоксидаидзеин, 2'-гидроксиформононетинптерокарпаны — маакиаин и медикарпинмономерные стильбены — резвератрол, дигидрорезвератрол и пицеатаннолизофлаванон — (±-)-3-гидроксивеститонизофлаван — (±-)-веститолфлаваноны — нарингенин и ликвиритигенин, а также а, 4,2', 4'-тетрагидроксидигидрохалкон. В состав препарата входят также олигомерные полифенолы: изофлавоностильбен — маакиазин, стильбенолигнанмааколин, и димерные транс-стильбены — сцирпусин А, сцирпусин В, маакин, а также ранее неизвестный стильбен — маакин А. Все олигомерные полифенолы состоят из рацемических смесей энантиомеров.

6. Установлено, что препарат «Максар®таблетки, покрытые оболочкой, 60 мг» при курсовом применении обладает гепатопротективной активностью, проявляет более выраженный по сравнению с карсилом терапевтический эффект у больных хроническим гепатитом вирусной и алкогольной этиологии, полностью купирует или ослабляет основные клинические проявления заболевания. Кроме того, препарат проявил себя как эффективное желчегонное средство, улучшающее экскреторную функцию печени. Побочные эффекты и противопоказания к применению не выявлены. Препарат разрешен к медицинскому применению. Осуществлены промышленные выпуски, регистрация на территории Российской Федерации и государственный контроль качества, эффективности и безопасности препаратов: «Маакии амурской древесина ангро», «Маакии амурской экстракт сухой», «Максар®таблетки, покрытые оболочкой, 60 мг» .

7. Максар обладает рядом дополнительных полезных свойств. Его применение в экспериментах на животных и в клинике способствует коррекции нарушений липидного спектра крови и жировой дистрофии печени. Препарат проявляет антиоксидантное действие и препятствует развитию алиментарной гиперлипопротеинемии у животных. Максар снижает интенсивность образования в печени и крови продуктов перекисного окисления липидов и регулирует систему антиоксидантной защиты организма, преимущественно через глутатионзависимые ферментативные механизмы, восстанавливает резервы эндогенных антиоксидантов (а-ТФ) и улучшает детоксикацию гидропероксидных радикалов. При действии препарата в дозе 4.1 мкг/мл на клеточные линии DLD-1 и НТ-29 рака кишечника человека отмечено ингибирование образования колоний этих опухолевых клеток на 50% по сравнению с контролем.

8. Из клеточной культуры А-18, полученной из проростков семян М. amurensis, выделено и идентифицировано 19 изофлавоноидов, представляющих собой изофлавоны, птерокарпаны, а также их moho-, ди-, малонилглюкозиды и ранее неизвестный 6'-0-малонил-3−0-/3−0-глюкопиранозил.

6,6а-дегидромаакиаин. Определены основные биотехнологические параметры клеточной культуры А-18, способной стабильно продуцировать изофлавоноиды (до 1.9% на сухой вес клеток). В отличие от растения, клеточные культуры не содержат мономерных и димерных стильбенов.

9. Проведена сравнительная оценка гепатопротективных, антиоксидантных и противовоспалительных свойств полифенольных комплексов (ПФК), приготовленных из древесины и клеточной культуры М. amurensis. Показано, что препарат из клеточной культуры обладает выраженным гепатозащитным действием, не уступающим по основным эффектам препарату из древесины. Гепатопротективная активность обоих ПФК обусловлена наличием в них суммы изофлавоноидов. Установлено влияние этих фитокомплексов на свободно-радикальное окисление, сопровождающееся прямым подавлением активности свободных радикалов и активацией неферментных механизмов антиоксидантной защиты, особенно выраженное для полифенолов из нативного растения (ПФКД). Выраженное противовоспалительное действие обнаружено только у ПФК из древесины М. amurensis.

10. Из спиртового экстракта стеблей винограда амурского Vitis amurensis выделены и идентифицированы шесть индивидуальных полифенольных соединений: два мономерных стильбена — резвератрол и пицеатаннол и четыре димерных стильбена — (-)-е-виниферин, (-)-паллидол, (+)-ампелопсин, А и (+)-изоампелопсин F.

11. Показано, что клеточная культура V. amurensis, трансформированная геном roIB, способна продуцировать резвератрол с выходом 3.15% на сухой вес клеток.

12. Из древесины тиса Taxus cuspidata выделены и идентифицированы четыре лигнана — (-)-секоизоларицирезинол, (+)-изотаксирезинол, (+)-изоларицирезинол, (+)-таксирезинол и два катехина — (+)-катехин, (-)-эпикатехин. Определены их антиоксидантная и антирадикальная активности, а также содержание в различных органах растения.

13. Из клеточной культуры Т. cuspidata выделены и идентифицированы 3 известных таксановых дитерпеноида — таксюннанин С, юннаксан, юннанксан, и один новый — таксюннанин-7р-ол. Его структура определена как 2a, 5a, 10?, 14?-тетраацетокси-7р-гидрокси-4(20), 11-таксадиен.

ЗАКЛЮЧЕНИЕ

.

Фундаментальные исследования, направленные на изучение природных соединений, установление структур этих соединений, их биогенеза, биологической активности и механизма действия из редких ценных растений дальневосточной флоры и их клеточных культур, являются основой для разработки и создания новых лекарственных препаратов.

Ранее выполненные работы по химическому исследованию хиноидных пигментов дальневосточных представителей сем. Вогадтасеае, включающие разработку различных способов выделения индивидуальных соединений, анализа качественного состава и количественного соотношения компонентов суммарных экстрактов и фракций, применение тонкослойной, гельпроникающей, абсорбционной, высокоэффективной жидкостной хроматографии и ЯМР спектроскопии были использованы в работе по созданию отечественного штамма.

— суперпродуцента эфиров шиконина. Эти работы предшествовали изучению физиологических и биохимических аспектов регуляции воробейника краснокорневого. Разработку методов регулирования биосинтеза шиконина (2) и его производных в культивируемых клетках воробейника было проведено совместно с сотрудниками Биолого-почвенного института ДВО РАН.

В результате был определен качественный состав и количественное соотношение хинонов в клеточных культурах ?. егуМгогЫгоп. Установлено, что клеточные культуры и корни растения продуцируют одинаковый набор пигментов.

— 9 эфиров шиконина и 5 производных изогексенилбензохинонилфурана, из которых пропионилшиконин, эхинофуран С, изобутирили изовалерилизогексенилбензохинонилфуран, оказались новыми соединениями. Количественные соотношения хинонов в клеточных культурах и корнях растения были различны.

Изучено влияние компонентов питательной среды на рост и продуктивность клеточной культуры воробейника краснокорневого. С помощью методов селекции и оптимизации компонентов питательной среды получен высокопродуктивный клеточный штамм ВК-39, способный в течение длительного периода (20 лет) стабильно накапливать более чем 8% суммы эфиров шиконина на сухой вес клеток. Повышение продукционных характеристик штамма ВК-39 было также достигнуто посредством стимуляции шикимат-фенилаланинового биосинтетического пути. Для решения этой задачи была получена культура клеток воробейника резистентная к 4-фторфенилаланину (штамм BK-39F) и устойчивая к действию этого ингибитора, способная накапливать свыше 12.6% ИГН на сухой вес клеток.

Штаммы клеток ВК-39 и BK-39 °F L. erythrorhizon были использованы для промышленного получения эфиров шиконина, причем процесс промышленного культивирования клеток воробейника экономически имеет существенные преимущества перед двухступенчатым процессом их культивирования, применяемым в настоящее время за рубежом.

Биомассы культур ВК-39 и BK-39 °F оказались хорошими источниками для продукции нового косметического средства, названного «Масло шикониновое». В 2003 г. в Приморском крае освоено производство препарата «Масло шикониновое» в промышленных масштабах. Препарат эффективно ингибирует грамположительную микрофлору (Staphylococcus aureus, S. epidermidis, S. lutea, Bacillus subtilis и др.), обладает противогрибковым действием, является эффективным нестероидным противовоспалительным препаратом, так как нормализует продукцию ключевого медиатора воспаления — у-интерферона, снижает отек и сосудистую проницаемость в очаге острого воспаления. Антимикробное и противовоспалительное действие препарата сочетается с его способностью регенерировать эпителий после различных поражений [680].

Экспериментальное изучение препарата «Масло шикониновое» показало, что он обладает выраженным противовоспалительным действием, причем терапевтическая эффективность препарата при лечении рожистых воспалений выявлена впервые.

Кроме ИГН и ИГБФ, растения сем. Boraginaceae биосинтезируют олигомеры кофейной кислоты, обладающие антивирусной, антибактериальной, антиоксидантной и антирадикальной активностью.

Следующей задачей работы было сравнительное изучение химического состава и биосинтеза полифенольных метаболитов в клеточных культурах и в растениях сем Boraginaceae. Показано, что Eritrichium sericeum и его клеточная культура Ег-1 биосинтезируют полифенольные метаболиты: (-)-рабдозиин, розмариновую кислоту и новый метаболит кофейной кислоты эритрихин. В отличие от Е. sericeum, растение L. erythrorhizon и его клеточная культура ВК-39 синтезируют (+)-энантиомер рабдозиина. Содержание рабдозиина и розмариновой кислоты в клеточных культурах ВК-39 и Ег-1 в десятки раз превышает их содержание в органах нативных растений.

Таким образом, впервые созданы два новых источника рабдозиина, причем в форме различных диастериомеров, (+) — и (-)-рабдозиина. Оба вещества (рабдозиин и розмариновая кислота) могут оказаться полезными для медицины. В последние годы появились сообщения о том, что розмариновая кислота ингибирует образование 5-гидокси-6,8,11,14-эйкозатетраеновой кислоты и лейкотриена В4, усиливает выработку простагландина Е2. Эти свойства позволяют применить ее для лечения воспалительных аутоиммунных артритов.

Увеличение продукции этих полифенолов в клеточной культуре незабудочника не удалось осуществить трансформированием их геном го/С, влияющем на экспрессию отдельных форм ключевых генов биосинтеза вторичных метаболитов [681]. Эта задача была выполнена путем долговременной селекции. Только два элиситора — метилжасмонат и ионы меди, могли существенным образом повлиять на увеличение продуктивности культуры. В итоге получена линия Е-4, накапливающая метаболиты кофейной кислоты с выходом до 7.86% от сухого веса ткани.

Фармакологические исследования комплексов полифенолов из клеточных культур егуМгогЫгоп (ПВ) и Е. эегюеит (ПН), содержащих олигомеры кофейной кислоты, начатые в 2003 г., подтвердили их антимикробное, противовоспалительное, и антиоксидантное действие. Обнаруженные в эксперименте под действием препаратов ПВ и ПН усиление экскреторной функции почек, угнетение экссудативной стадии воспаления, а также существенное воздействие на активность свободно-радикального окисления делают эти препараты перспективными при воспалительных заболеваниях почек. Впервые выявлено выраженное нефропротективное действие препарата незабудочника (ПН). Применение препарата ПН в дозе 100 мг/кг/день в течение 30 дней уменьшает развитие симптомов гломерулонефрита у крыс.

В течение многих лет в лаборатории химии природных хиноидных соединений ТИБОХ ДВО РАН проводился поиск природных антиоксидантов среди представителей дальневосточных растений. Наибольший интерес среди видов этих растений вызывает маакия амурская. Ее экстрактивные вещества обладают выраженными антиоксидантыми свойствами и низкой токсичностью, что побудило исследовать их в качестве гепатопротекторов при токсических поражениях печени. На основе полифенольного комплекса маакии амурской создан гепатопротективный препарат максар, который по активности превосходит известные гепатопротекторы — легалон и силибор. В процессе многолетних детальных химических исследований спиртовых экстрактов, полученных из измельченной ядровой древесины Maackia amurensis Rupr. et Maxim., было установлено, что основными компонентами маакии амурской являются 27 растительных метаболитов, принадлежащих к разным классам природных полифенолов. В состав препарата входят также олигомерные полифенолы и димерные стильбены. Все олигомерные полифенолы состоят из рацемических смесей энантиомеров.

Установлено, что в процессе выделения в кислых водно-спиртовых средах на сорбентах с обращенной фазой димерные транс-стильбены при облучении ультрафиолетовым светом легко изомеризуются с 50% выходом в соответствующие им димерные цис-стильбены. Однако в процессе производства и хранения субстанции и препарата максар такой изомеризации не происходит. Методом ВЭЖХ не было обнаружено даже следовых количеств димерных цис-стильбенов в образцах экстрактов, субстанции и лекарственной форме препарата после более чем четырех лет хранения в стандартных условиях.

После исследования химического состава компонентов ПФК препарата максар главным направлением исследований было изучение специфической фармакологической активности максара, проведение его клинических испытаний, разработка и утверждение нормативной документации на препарат.

Специфическая фармакологическая активность максара исследована в объеме требований ФГУ НЦ ЭСМП Росздравнадзора РФ к доклиническому изучению гепатопротекторов. В эксперименте препарат препятствует развитию острого гепатита, вызванного тетрахлорметаном, причем гепатопротективное действие максара более выражено, чем влияние легалона. Результатами лечения максаром (200 мг/кг) острого токсического гепатита являются: отсутствие гибели животных, нормализация структуры печеночных долек, защита паренхимы печени от некроза, белковой и жировой дистрофии. Максар препятствует развитию характерных для токсического гепатита нарушений ультраструктуры гепатоцитов. Терапия максаром приводит к улучшению антитоксической функции печени. Максар предохраняет цитохром Р-450 от конверсии в метаболически инертный цитохром Р-420, восстанавливает нормальное течение реакций окисления и глюкуронирования.

Максар характеризуется малой острой и хронической токсичностью, лишен мутагенного, эмбриотоксического, тератогенного, иммунотоксичеекого и аллергизирующего эффектов.

Клинические исследования максара у больных хроническим гепатитом вирусной и алкогольной этиологии были проведены в соответствии с «Программой клинических испытаний» утвержденной Фармакологическим комитетом МЗ РФ. Препарат способствовал уменьшению субъективных признаков заболевания (повышалась работоспособность, уменьшались боль и диспепсические расстройства). При этом снижались активность аминотрансфераз, щелочной фосфатазы и содержание билирубина в кровиулучшались показатели печеночной структуры по данным ультразвукового исследования, показатели клеточного и гуморального иммунитета. Максар проявил себя как эффективное желчегонное средство, улучшающее экскреторную функцию печени, — у больных повышалось содержание в желчи билирубина, желчных кислот, холестерина, фосфолипидов. По клинической эффективности максар превосходил препарат сравнения — карсил. Побочные эффекты и противопоказания к применению не выявлены.

На основании результатов клинической апробации препарат максар рекомендован в качестве гепатопротектора для медицинского применения и промышленного выпуска.

Для установления подлинности препаратов: «Маакии амурской древесина ангро», «Маакии амурской экстракт сухой», «Максар®таблетки, покрытые оболочкой, 60 мг» были разработаны методы ТСХи ВЭЖХопределения веществ, специфичных для этих препаратов. Применение этих двух методов хроматографии дает возможность однозначно решить вопрос о подлинности препаратов. Стандартизацию активных компонентов в субстанции и препарате максар проводили по количественному содержанию основных действующих веществ — мономерных полифенолов (по общей сумме стильбенов и изофлавонов). Для этого была разработана методика, основанная на выделении суммы мономерных полифенолов из препарата, в виде элюата на колонке с силикагелем в системе растворителей бензол-ацетон и последующим измерением собственного поглощения суммы изофлавонов (А 272 нм) и суммы стильбенов (А 320 нм).

Кроме этого, модифицированы известные методы определения тяжелых металлов, мышьяка и других показателей применительно к сырью, субстанции и препарату максар. Исследована стабильность сырья, субстанции и препарата и определены сроки их годности и микробиологическая чистота. Установлены ограничительные нормативы содержания примесей и остаточного растворителя.

Разработана оптимальная лекарственная форма препарата Максар®- - таблетки, покрытые оболочкой, 60 мг. Для определения диагностических признаков цельного сырья, были получены микрофотографии древесины на поперечном и продольных срезах.

На основе этих методов стандартизации разработаны проекты ФСП: «Маакии амурской древесина ангро», «Маакии амурской экстракт сухой», «Максар®таблетки, покрытые оболочкой, 60 мг», которые прошли экспертизу ФГУ НЦ ЭСМП Росздравнадзора РФ.

Организовано производство субстанции и препарата максар, расположенное в производственных помещениях химико-технологического участка (ХТУ) ТИБОХ ДВО РАН и на ЗАО «Брынцалов А» .

Разработаны технологические схемы и регламенты на производство субстанции и препарата «Максар®таблетки, покрытые оболочкой 60 мг». Осуществлены регистрация на территории Российской Федерации, промышленные выпуски и государственный контроль качества, эффективности, безопасности препаратов: «Маакии амурской древесина ангро», «Маакии амурской экстракт сухой», «Максар®таблетки, покрытые оболочкой, 60 мг» .

Несмотря на то, что препарат максар был уже зарегистрирован и рекомендован в качестве гепатопротектора, исследование его фармакологических эффектов было продолжено.

В результате было выяснено, что, кроме гепатопротективного действия, максар способствует коррекции нарушений липидного спектра фона крови и жировой дистрофии печени, повышает активность системы антиоксидантной защиты организма, препятствует развитию алиментарной гиперлипопротеинемии у животных. Он также оказывает антиоксидантное действие при экспериментальном сахарном диабете, индуцированном аллоксаном. Максар снижает интенсивность образования в печени продуктов перекисного окисления липидов (ДК, МДА), регулирует систему антиоксидантной защиты преимущественно через, глутатионзависимые ферментативные механизмы и улучшает детоксикацию гидропероксидных радикалов.

Известно, что изофлавоноиды и стильбены как фитоэстрогены, входящие в состав препарата максар, по сравнению с эстрадиолом, имеют дифференцированные агонистантагонистические эффекты, выборочно модулируют Е1Чаг и ЕН (3 рецепторы эстрогена и вызывают соответствующие биологические реакции на молекулярном, клеточном, и физиологическом уровне.

Высокое содержание фитоэстрогенов в зарегистрированном гепатопротективном препарате из маакии амурской явилось основанием для изучения его эффектов в условиях гипоэстрогенемии.

Проведенные под руководством профессора Плотникова М. Б экспериментальные исследования по изучению его антитромбогенного и антитромбоцитарного эффектов при овариоэктомии у крыс в сравнении с гормональной заместительной терапией этинилэстрадиолом показали, что препарат максар обладает антитромбогенным действием, ослабляет агрегацию тромбоцитов, уменьшает коагуляционные свойства крови и потенцирует антиагрегантную активность сосудистой стенки. Преимуществом препарата максар, по сравнению с гормональной заместительной терапией, является наличие антитромбоцитарной активности, которая не выявлена у этинилэстрадиола в этих условиях. Результаты экспериментов переданы в ФГУ НЦ ЭСМП Росздравнадзора РФ для получения разрешения на проведение клинических исследований препарата по новому медицинскому применению как средства для лечения кпитмактеричекого синдрома у женщин.

Впервые изучено противоопухолевое действие максара. Для его оценки были использованы опухолевые клетки НТ-19, DLD-1 (рак кишечника), RPMI-7951 (меланома — рак кожи человека) и применены MTS-метод и метод мягкого агара.

Результаты экспериментов показали, что под действием препарата «Маакии амурской экстракт сухой» в исследованном интервале концентрации происходит ингибирование роста колоний клеток рака кишечника человека DLD-1 и НТ-29 по сравнению с контролем. Ингибирование роста колоний на 50% для клеток DLD-1 и НТ-29 происходит при концентрациях 4.1 и 8.8 мкг/мл, соответственно. Эти результаты указывают на то, что препарат «Маакии амурской экстракт сухой» обладает более сильным противоопухолевым действием по отношению к клеткам рака кишечника человека НТ-29 и DLD-1 по сравнению с генистеином. Кроме этого показано, что максар в исследованных концентрациях ингибирует рост колоний рака кишечника человека и не влияет на рост колоний клеток меланомы кожи человека RPMI-7951, что указывает на избирательное действие препарата.

С целью разработки новой технологии для получения воспроизводимого источника субстанции препарата максар, а также для исследования путей биосинтеза полифенольных соединений, входящих в его состав, впервые получены клеточные культуры из различных органов М. amurensis. Из клеточной культуры, полученной из проростков семян (штамм А-18) выделено и идентифицировано 19 изофлавоноидов, представляющих собой изофлавоны и птерокарпаны, а также их монодии малонилглюкозиды, и новый метаболит, структура которого установлена как 6'-0-малонил-3−0-/3−0-глюкопиранозил-6,6а-дегидромаакиаин. Клеточная культура А-18 в течение 2 лет стабильно биосинтезировала до 1.9% изофлавоноидов на сухой вес клеток, однако в отличие от растения маккии амурской, не синтезировала мономерные и димерные стильбены.

Впервые проведена сравнительная оценка гепатопротективных, противовоспалительных и антиоксидантных свойств полифенольных комплексов (ПФК), приготовленных из древесины и клеточной культуры М. amurensis. Показано, что препарат из клеточной культуры обладает выраженным гепатозащитным действием, не уступающим по основным эффектам препарату из древесины. Следовательно, гепатопротективная активность ПФК обусловлена наличием в обоих препаратах суммы изофлавоноидов. Установлено влияние обоих фитокомплексов маакии на свободно-радикальное окисление, сопровождающееся прямым подавлением активности свободных радикалов и активацией неферментных механизмов антиоксидантной защиты, особенно выраженное для полифенолов нативного растения. Выраженное противовоспалительное действие, обнаруженное только у ПФК из древесины М. amurensis, обусловлено присутствием в препарате максар мономерных и димерных стильбенов.

Обнаружены антимикробные свойства у полифенольных комплексов маакии. Оба препарата в концентрации 25 мкг/мл предотвращали рост микроорганизмов: Pseudomonadas aeruginosa, Escherichia coli, Staphylococcus aureus, Candida albicans.

В последние годы является актуальным поиск новых природных источников с высоким содержанием резвератрола, обладающим множеством ценных фармакологических свойств. Из спиртового экстракта стеблей винограда амурского было выделено и идентифицировано шесть индивидуальных полифенольных соединений: резвератрол, пицеатаннол, (-)-е-виниферин, (-)-паллидол, (+)-ампелопсин, А и (+)-изоампелопсин F.

Впервые получена трансформированная геном rolB клеточная культура VB2 винограда амурского, способная биосинтезировать резвератрол с выходом 3.15% на сухой вес клеток. Трансформация клеток V2 культуры Vitis amurensis геном rolB из Agrobacterium rhizogenes привело более чем 100-кратному увеличению продукции резвератрола. Такой выход резвератрола оказался рекордным и более чем на два порядка превышал его продукцию в клеточных культурах, сообщенных ранее многими исследователями. Кроме этого, впервые продемонстрирована возможность с использованием потенциала генетической трансформации биологического синтеза практически индивидуального природного соединения с высоким выходом.

Химическое исследование метаболитов из клеточной культуры растения Taxus cuspidata позволило выделить и идентифицировать четыре С-14-оксигенированных таксановых дитерпеноида, один из которых — таксюннанин-7р-ол — оказался новым таксаном. Его структура определена спектральными методами как 2а, 5а, 10р, 14р-тетроацетокси-7р-гидрокси-4(20), 11-таксадиен. Из древесины растения Т. cuspidata выделены и идентифицированы четыре лигнана: (-)-секоизоларицирезинол, (+)-изотаксирезинол, (+)-изоларицирезинол, (+)-таксирезинол, и два катехина: (+)-катехин, (-)-эпикатехин. Определены антиоксидантная и антирадикальная активность полифенолов, а также их содержание в различных органах растения.

В заключение следует отметить, что большинство исследованных клеточных культур оказались не способны продуцировать полный набор метаболитов, синтезируемых растениями. Чаще всего культуры клеток накапливают только часть из этих соединений, однако, существенно в больших количествах, чем растения. Подобные эффекты описаны в литературе для многих клеточных культур. Они свидетельствуют о переходе клеток к более «древнему» (примитивному) пути биосинтеза [680]. Однако следует отметить, что клеточные культуры L. erythrorhizon и Е. sericeum содержат наборы вторичных метаболитов, которые в точности повторяют имеющиеся у нативных растений.

Показать весь текст

Список литературы

  1. Bolley Р., Wydler R. Ueber den farbstoff der Anchusa tinctoria И Justus Liebigs Ann. Chem. 1847. — Bd. 62. — S. 141−157.
  2. Brockmann H. Die konstitution des alkannins, shikonins und alkannans // Justus Liebigs Ann. Chem. 1936. — Vol. 521, N 1. — P. 1−47.
  3. Jain A.C., Mathur S.K. A chemical study of the pigments of Arnebia hispidissima И Bull. Nat. Sei. India. 1965. — N 28. — P. 52−56.
  4. Kuhara M. On the red colouring matter of the Lithospermum erythrorhizon II Chem. News. 1878. — Vol. 38. — P. 238.
  5. Thomson R.H. Naturally Occurring Quinones. 2 nd ed. — London — New York: Acad. Press, 1971. — 734 p.
  6. Thomson R.H. Naturally Occurring Quinones. III. Recent advances. 3 d ed. -London — New York: Chapman and Hall, 1987. — 732 p.
  7. Papageorgiou V.P., Assimopoulou A.N., Couladouros E.A., Hepworth D., Nicolaou K.C. The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products //Angew. Chem. Int. Ed. 1999. — Vol. 38, N 3. — P. 270−300.
  8. Winter R.A. Consumer’s Dictionary of Cosmetic Ingredients: Crown, ed. New York. 1984.
  9. Kuhara M. Rather Farbstoff von Lithospermum erythrorhizon II Ber. Dtsch. Chem. Ges. 1878. — Bd. 11. — S. 2143.
  10. Liebermann С., Romer M. Ueber Alkannin // Ber. Dtsch. Chem. Ges. 1887. — Bd. 20.-S. 2428−2431.
  11. Underwood A.L., Neumann W.F. Color reaction of beryllium with alkannin and naphthazarin (spectrophotometric studies) //Anal. Chem. 1949. — Vol. 21, N 11. -P. 1348−1352.
  12. Raudnitz H., Redlich L., Fiedler F. Zur Konstitution des Alkannins // Ber. Dtsch. Chem. Ges.-1931.-Bd. 64, N7.-S. 1835−1841.
  13. Dieterle H., Salomon A., Nosseck E. Zur Konstitution des Alkannins // Ber. Dtsch. Chem. Ges. 1931. — Bd. 64, N 8. — S. 2086−2090.
  14. Brand K., Lohmann A. Beitrag zur Kenntnis des roten Farbstoffs der Alkannawurzel // Ber. Dtsch. Chem. Ges. 1935. — Bd. 68, N 8. — S. 1487−1494.
  15. Majima R., Kuroda C. On the colouring matter of the Lithospermum erythrorhizon II Acta Phytochim. 1922. — Vol. 1, N 3. — P. 43−65.
  16. Brockmann H., Muller К. Uber die synthese des alkannans und anderer alkyl-naphtazarine //Justus Liebigs. Ann. Chem. 1939. — Vol. 540, N 1. — P. 51−72.
  17. Toribara T.Y., Underwood A.L. Preparation of alkannin and naphthazarin for use as reagents for beryllium // Anal. Chem. 1949. — Vol. 21, N 11. — P. 1352−1356.
  18. Arakawa H., Nakazaki M. Absolute configuration of shikonin and alkannin // Chem. Ind. 1961. -Vol. 21.-P. 947.
  19. Papageorgiou V.P. A new pigment of Alkanna tinktoria, having naphtoquinone structure // Planta Med. 1977. — Vol. 31, N 4. — P. 390−394.
  20. Papageorgiou V.P. Naphthaquinones from roots of Macrotomia cephalotes DC // Planta Med. 1979. — Vol. 37, N 11. — P. 259−263.
  21. Papageorgiou V.P., Mellidis A.S., Sagredos A.N. Study on the antibiotic fraction of Alkanna tinctoria Tausch // Chim. Chron. 1980. — Vol. 9. — P. 57−63.
  22. Papageorgiou V.P., Winkler A., Sagredos A.N., Digenis G.A. Studies on the relationship of structure to antimicrobial properties of naphthaquinones and other constituents of Alkanna tinctoria II Planta Med. 1979. — Vol. 35, N 1. — P. 56−60.
  23. V.P. 1H- NMR spectra of naturally occurring isohexenylnaphthazarin pigments // Planta Med. 1979. — Vol. 37, N 10. — P. 185−187.
  24. Papageorgiou V.P., Digenis G.A. Isolation of two new alkannin esters from Alkanna tinctoria II Planta Med. 1980. — Vol. 39, N 5. — P. 81−84.
  25. Papageorgiou V.P. Study on the structure of the components of Alkanna tinctoria // Chim. Chron. 1978. — Vol. 7. — P. 45−54.
  26. A.C., Баньковский А. И., Тареева H.B., Маренова Л. Д., Боряев К. И. О выделении шиконина из некоторых видов сем. Boraginaceae // Лекарственные растения / Всесоюз. науч.-исслед. ин-т лекарств, растений. 1969. — Т. 15: Химия. — С. 529−537.
  27. Н.В., Романова А. С., Баньковский А. И., Кибальчич П. Н. О шиконине из Lithospermum officinale II Химия природ, соединений. 1966. — № 5. — С. 359 360.
  28. Н.В. Химическое изучение нафтохинонов некоторых видов сем. Бурачниковых: автореф. дис.. канд. фарм. наук. Москва, 1971. — 19 с.
  29. А.С., Тареева Н. В., Баньковский А. И. Выделение шиконина из Onosma caucasicum и Echium rubrum И Химия природ, соединений. 1967. — № 1.-С. 71.
  30. А.С., Тареева Н. В., Первых Л. Н., Калашникова Г. К., Боряев К. И., Пакалн Д. А., Патудин А. В. Шиконин из Macrotomia echioides, Onosma livanovii, Onosma sericeum, Onosma setosum II Химия природ, соединений. 1981. — № 1.-C. 96.
  31. Л.Р. Шиконин из Onosma tauricum II Химия природ, соединений. 1972. — № 2.-С. 238.
  32. Щербановский Л.P. Onosma visianii новый источник шиконина // Химия природ, соединений. — 1971. — № 4. — С. 517−518.
  33. Л.Р. Наявнють щиконшу в деяких видах родини шорстколистих i його вплив на молочнокисл! бактерп // Укр. ботан. журн. 1971. — Т. 28, № 4. -С. 504−508.
  34. Л.Р., Луке Ю. А. Шиконин из Echium lycopsis II Химия природ, соединений. 1974. — № 4. — С. 513−514.
  35. I., Т. Kishi Т., S. Ikegami S., Y. Hirata Y. Naphthoquinone derivatives from Lithospermum erythrorhizon II Tetrahedron Lett. 1965. — Vol. 6, N 52. — P. 47 374 739.
  36. Morimoto I., Hirata Y. New naphthoquinone derivative from Lithospermum erythrorhizon II Tetrahedron Lett. 1966. — Vol. 7, N 31. — P. 3677−3680.
  37. Kazuaki K., Hiroyuki Т., Yasuhide Т., Takashi S., Manki K. Constituents of shikon. I. Structure of three new shikonin derivatives and isolation anhydroalkannin // Shoyakugaku Zasshi. 1973. — Vol. 27, N 1. — P. 24−30.
  38. Zhu F.-f., F.-s. Lu F.-s., G.-q. Xiang G.-q. Isolation of shikonin and its derivatives by HPLC//Sepu. 1984. — Vol. 1, N 2. — P. 131−133.
  39. Sung C.-W., Liu K.-S., Li N.-W. Survey on resource of Lithospermum erythrorhizon and related herbs in China //Yao Hsueh Tung Pao. 1980. — Vol. 15, N 5. — P. 3−5.
  40. Fu S., Xiao P. Naphthoquinone pigments on Xinjiang Ruanzicao (Arnebia euchroma) //Zhongcaoyao. 1986. — Vol. 17, N 10. — P. 434−437.
  41. Fu S., Shang Т., P. Xiao P. Analysis of naphthaquinone pigments in some Chinese medicinal «Zi Cao» // Yaoxue Xuebao. 1984. — Vol. 19, N 12. — P. 921−925.
  42. Bai G., Jin X.-J. Chemical constituents of Lithospermum erythrorhizon И Chem. Res. Chin. Univ. 1994. — Vol. 10, N 3. — P. 263−265.
  43. Liu G.-S. Isolation and identification of alkannin ?.?'-dimethylacrylate, a new naphthoquinone component in Arnebia euchroma Johnst. // Yao Hsueh T’ung Pao. -1981.-Vol. 16, N5.-P. 14−15.
  44. Papageorgiou V.P., Assimopoulou A.N., Samanidou V.F., Papadoyannis I.N. Analytical methods for the determination of alkannins and shikonins // Curr. Org. Chem. 2006. — Vol. 10, N 5. — P. 583−622.
  45. Khan H.A., Chandrasekharan I., Ghanim A. Naphthazarins from Arnebia hispidissima II Phytochemistry. 1983. — Vol. 22, N 2. — P. 614−615.
  46. Shukla Y.N., Tandon J.S., Bhakuni D.S., Dhar M.M. Chemical constituents of the antibiotic fraction of the of Arnebia nobilis И Experientia. 1969. — Vol. 25, N 4. — P. 357−358.
  47. Shukla Y.N., Tandon J.S., Bhakuni D.S., Dhar M.M. Naphthoquinones of Arnebia nobilis II Phytochemistry. 1971. — Vol. 10, N 8. — P. 1909−1915.
  48. H.H. Советский алканнин //Фармация. 1939. — № 10. — С. 24−25.
  49. Ning W., Yu Т., Cao R. Effect of an shikonin elicitor produced by Aspergillus oryzae on the metabolism of Onosma panicuiatum cells // Zhiwu Shengli Xuebao. 1996. -Vol. 22, N1.-P. 74−80.
  50. Fukui H., Tsukada M., Mizukami H., Tabata M. Formation of stereoisomeric mixtures of naphthoquinone derivatives in Echium lycopsis callus cultures // Phytochemistry. 1983. — Vol. 22, N 2. — P. 453−456.
  51. Mita G., Gerardi C., Miceli A., Bollini R., De Leo P. Pigment production from in vitro cultures of Alkanna tinctoria Tausch // Plant Cell Reports. 1994. — Vol. 13, N 7. -P. 406−410.
  52. Hisamichi S., Yoshizaki F. Studies on the shikon I. Structures of new minor pigments and isolation of two isomers of shikonin derivatives from Lithospermum erythrorhizon Sieb, et Zucc. // Shoyakugaku Zasshi. 1982. — Vol. 36, N 2. — P. 154−159.
  53. Ai К., Li F., Li Y., Wang W., Wu Y. Naphthaquinone constituents of Onosma confertum W. W. Smith and quantitative determination of shikonin // Zhiwu Xuebao. 1989. — Vol. 31, N 7. — P. 549−553.
  54. Tabata M., Mizukami H., Hiraoka N., Konoshima M. Pigment formation in callus cultures of Lithospermum erythrorhizon // Phytochemistry. 1974. — Vol. 13, N 6. -P. 927−932.
  55. Mizukami H., Konoshima M., Tabata M. Effects of nutritional factors on shikonin derivative formation in Lithospermum callus cultures // Phytochemistry. 1977. -Vol. 16, N 8.-P. 1183−1186.
  56. Mizukami H., Konoshima M., Tabata M. Variation in pigment production in Lithospermum erythrorhizon callus cultures // Phytochemistry. 1978. — Vol. 17, N 1.-P. 95−97.
  57. Fukui H., Yoshikawa N., Tabata M. Induction of shikonin formation by agar in Lithospermum erythrorhizon cell suspension cultures // Phytochemistry. 1983. -Vol. 22, N 11. — P. 2451−2453.
  58. Afzal M., Al-Oriqat G. Shikonin derivatives. 5. Chemical investigations of Arnebia decumbens II Agric. Biol. Chem. 1986. — Vol. 50, N 3. — P. 759−760.
  59. Afzal M., Al-Oriquat G. Shikonin derivatives. 6. Chemical investigations of Arnebia decumbens II Agric. Biol. Chem. 1986. — Vol. 50, N 6. — P. 1651−1652.
  60. Cisowski W., Dembinska-Migas W., Dzikowska J. Naphtoquinone dyes from the roots of Lithospermum an/ense L. // Acta Pol. Pharm. 1993. — Vol. 50, N 6. — P. 443−446.
  61. Koul S., Sambyal M., Khajuria R.K., Jain S.M. Acetylshikonin from callus cultures of Onosma echioides var. hispidum I/ Fitoterapia. 1993. — Vol. 64, N 6. — P. 552−553.
  62. B.H., Патудин A.B., Попов Ю. Г., Рабинович С. А., Мирошников А. И. Культура клеток Arnebia euchroma (Royle) Jonst. новый источник получения шиконина // Хим.-фарм. журн. — 1991. — Т. 25, № 1. — С. 53−55.
  63. Afzal М., Muhammad N. Shikonin (3,(3-dimethylacrylate: a component of Alkanna hirsutissima // Agric. Biol. Chem. 1983. — Vol. 47, N 2. — P. 411−412.
  64. Salam N.A., Ibrahim Y., Khafagy S., Sarg T. Shikonin derivatives, flavonoids, and triterpenoids isolated from Moltkiopsis ciliate, Lithospermum callosum Vahl (Forsk) Jahnst//Acta Pharm. Jugosl. 1981. — Vol. 31, N 4. — P. 237−241.
  65. Cong P. Mass spectrometric studies on alkannins and structure of O-p-acetoxyisovalerylshikonin //Yaoxue Xuebao. 1984. — Vol. 19, N 6. — P. 450−454.
  66. DeLeo P., Miceli A., Ronzini L., Sanasi L., Sgarra R. Chemical characterization of alkannin esterified derivatives // Agro Food Ind. Hi-Tech. 1996. — Vol. 7, N 1. — P. 23−25.
  67. Urbanek H., Bergier K., Saniewski M., Patykowski J. Effect of jasmonates and exogenous polysaccharides on production of alkannin pigments in suspension cultures of Alkanna tinctoria II Plant Cell Reports. 1996. — Vol. 15, N 8. — P. 637 641.
  68. Zho R., Cao R., Wang M., Pan D., Du Zh., Lu W., Shi Y. Purple-red pigment formed in callus of Onosma paniculatum Bur. et Franch // Zhiwu Xuebao. 1990. — Vol. 32, N 10.-P. 749−752.
  69. Chaisuksant R., Niopas I., Voulgaropoulos A., Mellidis A., Papageorgiou V.P. Analysis of some isohexenylnaphthazarins by reversed-phase HPLC // Pharmazie. -1995. Vol. 50, N 5. — P. 363−363.
  70. EI-Afly T.S., El-Tanbouly N.D., Sokkar N.M. Naphthoquinones of Arnebia tinctoria (Forssk.) // Egypt. J. Pharm. Sci. 1996. — Vol. 37, N 1−6. — P. 65−70.
  71. Mellidis A.S., Papageorgiou V.P. Naphthazarins from Onosma heterophylla II J. Nat. Prod. 1987. — Vol. 50, N 4. — P. 618−619.
  72. Kirimer N., Bozan B., Baser K.H.C. A new naphthaquinone from the roots of Arnebia densiflora II Fitoterapia. 1995. — Vol. 66, N 6. — P. 499−500.
  73. Ballantine J.A. The’isolation of two esters of the naphthaquinone alcohol, shikonin, from the shrub Jatropha glandulifera // Phytochemistry. 1969. — Vol. 8, N 8. — P. 1587−1590.
  74. Nickel S.L., Carroll T.F. Reversed-pase ion-pair high-performance liquid chromatography of napthazarins // J. Chromatogr. A. 1984. — Vol. 295. — P. 521 525.
  75. Sankawa U., Ebizuka Y., Miyazaki T., Isomura Y., Otsuka H., Shibata S., Inomata M., Fukuoka F. Antitumor activity of shikonin and its derivatives // Chem. Pharm. Bull. 1977. — Vol. 25, N 9. — P. 2392−2395.
  76. Yoshikawa N., Fukui H., Tabata M. Effect of gibberellin A3 on shikonin production in Lithospermum callus cultures // Phytochemistry. 1986. — Vol. 25, N 3. — P. 621 622.
  77. Yazaki K., Fukui H., Kikuma M., Tabata M. Regulation of shikonin production by glutamine in Lithospermum erythrorhizon cell cultures // Plant Cell Reports. 1987. -Vol. 6, N2.-P. 131−134.
  78. Fukui H., Yoshikawa N., Tabata M. Induction of benzoquinone formation by activated carbon in Lithospermum erythrorhizon cell suspension cultures // Phytochemistry. 1984. — Vol. 23, N 2. — P. 301−305.
  79. Fujita Y., Takahashi S., Yamada Y. Selection of cell lines with high productivity of shikonin derivatives by protoplast culture of Lithospermum erythrorhizon cells // Agric. Biol. Chem. 1985. — Vol. 49, N 6. — P. 1755−1759.
  80. Fujita Y., Hara Y. The effective production on shikonin by cultures with an increased cell population //Agric. Biol. Chem. 1985. — Vol. 49, N 7. — P. 2071−2075.
  81. Maeda Y., Fujita Y., Yamada Y. Callus formation from protoplasts of cultured Lithospermum erythrorhizon cells // Plant Cell Reports. 1983. — Vol. 2, N 4. — P. 179−182.
  82. Alferman A.W. Syntheses by plant cells // Biocatalysts in organic syntheses. -Amsterdam: Elsevier, 1985. P. 225−238.
  83. Brodelius P. Utilization of plant cell cultures for production of biochemicals // Hereditas. 1985. — Vol. 103, N 3 suppl. — P. 73−81.
  84. Terada A., Tanoue Y., Hatada A., Sakamoto H. Total synthesis of shikalkin (±)-shikonin. // J. Chem. Soc. Chem. Commun. 1983. — N 18. — P. 987−988.
  85. Terada A., Tanoue Y., Hatada A., Sakamoto H. Synthesis of shikalkin (±shikonin) and related compounds // Bull. Chem. Soc. Jpn. 1987. — Vol. 60, N 1. — P. 205 213.
  86. A.M., Баланева H.H., Новиков В. Л., Еляков Г. Б. Полный синтез шикалкина // Докл. АН СССР. 1987. — Т. 295, № 3. — С. 614−617.
  87. В.Л., Баланева Н. Н., Моисеенков A.M., Еляков Г. Б. Синтез шикалкина и некоторых родственных ему соединений // Изв. АН. Сер. хим. / Рос. акад. наук. 1992. — № 8. — С. 1901−1910.
  88. Braun М., Bauer С. Synthesis of shikonin and alkannin // Liebigs Ann. Chem. -1991.-N 11.-P. 1157−1164.
  89. M., Devant R. ® — and (S)-2-acetoxy-1,1,2-triphenylethanol effective synthetic equivalents of a chiral acetate enolate // Tetrahedron Lett. — 1984. — Vol. 25, N 44. — P. 5031−5034.
  90. Nicolaou K.C., Hepworth D. Concise and efficient total syntheses of alkannin and shikonin //Angew. Chem. Int. Ed. 1998. — Vol. 37, N 6. — P. 839−841.
  91. Zhao L.-M., Xu D.-F., Zhou W., Li S.-S. Concise formal synthesis of (+/-)-shikonin via a highly alpha-regioselective prenylation of 1,4,5,8-tetramethoxynaphthalene-2-carbaldehyde // Lett. Org. Chem. 2008. — Vol. 5, N 3. — P. 234−236.
  92. Inouye H., Matsumura H., Kawasaki M., Inoue K., Tsukada M., Tabata M. Two quinones from callus cultures of Echium lycopsis II Phytochemistry. 1981. — Vol. 20, N 7.-P. 1701−1705.
  93. Okamoto T., Yazaki K., Tabata M. Biosynthesis of shikonin derivatives from L-phenylalanine via deoxyshikonin in Lithospermum cell cultures and cell-free extracts // Phytochemistry. 1995. — Vol. 38, N 1. — P. 83−88.
  94. Loscher R., Heide L. Biosynthesis of p-hydroxybenzoate from p-coumarate and p-coumaroyl-coenzyme A in cell-free extracts of Lithospermum erythrorhizon cell cultures // Plant Physiol. 1994. — Vol. 106, N 1. — P. 271−279.
  95. Yazaki K., Heide L., Tabata M. Formation of p-hydroxybenzoic acid from p-coumaric acid by cell free extract of Lithospermum erythrorhizon cell cultures // Phytochemistry. 1991. — Vol. 30, N 7. — P. 2233−2236.
  96. Schmid H.V., Zenk M.H. p-Hydroxybenzoic acid and mevalonic acid as precursors of the plant naphthoquinone alkannin // Tetrahedron Lett. 1971. — Vol. 12, N44.-P. 4151−4155.
  97. Inouye H., Ueda S., Inoue K., Matsumura H. Biosynthesis of shikonin in callus cultures of Lithospermum erythrorhizon II Phytochemistry. 1979. — Vol. 18, N 8. -P. 1301−1308.
  98. Heide L. New aspects of shikonin biosythesis: geranyl pyrophosphate synthase and origin of p-hydroxybenzoic acid // Planta Med. 1988. — Vol. 54, N 6. — P. 567.
  99. Yazaki K., Fukui H., Tabata M. Isolation of the intermediates and related metabolites of shikonin biosynthesis from Lithospermum erythrorhizon cell cultures // Chem. Pharm. Bull. 1986. — Vol. 34, N 5. — P. 2290−2293.
  100. Yao X.-S., Ebizuka Y., Noguchi H., Kiuchi F., iitaka Y., Sankawa U. Structure of arnebinol, a new ansa-type monoterpenylbenzenoid with inhibitory effect to prostaglandin biosynthesis // Tetrahedron Lett. 1983. — Vol. 24, N 23. — P. 24 072 410.
  101. Tabata M., Tsukada M., Fukui H. Antimicrobial activity of quinone derivatives from Echium licopsis callus cultures // Planta Med. 1982. — Vol. 44, N 4. — P. 234 236.
  102. Fukui H., Tani M., Tabata M. An unusual metabolite, dihydroechinofuran, released from cultured cells of Lithospermum erythrorhizon // Phytochemistry. -1992. Vol. 31, N 2. — P. 519−521.
  103. Yazaki K., Fukui H., Tabata M. Dihydroshikonofuran, an unusual metabolite of quinone biosynthesis in Lithospermum cell cultures // Chem. Pharm. Bull. 1987. -Vol. 35, N2.-P. 898−901.
  104. Hayashi M. Pharmacological studies of shikon and tooki. I Pharmacological effects of the water and ether extracts // Nippon Yakurigaku Zasshi. 1977. — Vol. 73, N2.-P. 177−191.
  105. Hayashi M. Pharmacological studies of shikon and tooki. II. Pharmacological effects of the pigment components, shikonin and acetylshikonin // Nippon Yakurigaku Zasshi. 1977. — Vol. 73, N 2. — P. 193−203.
  106. Hayashi M. Pharmacological studies of shikon and tooki. III. Effect of topical application of the ether extracts and Shiunko on inflammatory reactions // Nippon Yakurigaku Zasshi. 1977. — Vol. 73, N 2. — P. 205−214.
  107. Ozaki Y., Ohno A., Abe K.-i., Saito Y., Satake M. Comparative study on the accelerative effect of «Koushikon» and «Nanshikon» and their constituents on proliferation of granuloma tissue in rats // Biol. Pharm. Bull. 1993. — Vol. 16, N 7. -P. 683−685.
  108. Ozaki Y., Ohno A., Saito Y., Satake M. Accelerative effect of shikonin, alkannin and acetylshikonin on the proliferation of granulation tissue in rats // Biol. Pharm. Bull. 1994. — Vol. 17, N 8. — P. 1075−1077.
  109. Ozaki Y., Xing L., Satake M. Accelerative effect of «Nanshikon» and its constituents on the proliferation of granulation tissue in rats // Biol. Pharm. Bull. -1996. Vol. 19, N 2. — P. 233−236.
  110. Tanaka S., Tajima M., Tsukada M., Tabata M. A comparative study on antiinflammatory activities of the enantiomers, shikonin and alkannin // J. Nat. Prod. -1986. Vol. 49, N 3. — P. 466—469.
  111. Wang W.J., Bai J.Y., Liu D.P., Xue L.M., Zhu X.Y. The antiinflammatory activity of shikonin and its inhibitory effect on leukotriene B4 biosynthesis // Yao Xue Xue Bao. 1994. — Vol. 29, N 3. — P. 161−165.
  112. Lin Z.-B., Chai B.-L., Wang P., Guo Q.-X., Lu F.-S., Xiang G.-Q. Studies on the antiinflammatory effect of chemical principle of Zi-Cao Arnebia euchroma (Royle) Johnst. // Pei-ching I Hsueh Yuan Hsueh Pao. 1980. — Vol. 12, N 2. — P. 101−106.
  113. Lin Z.-B., Wang P., Ruan Y., Guo Q.-X. Antiinflammatory effect of (3,(3-dimethylacrylshikonin //Acta Pharmacol. Sin. 1980. — Vol. 1, N 1. — P. 60−63.
  114. Singh В., Sharma M.K., Meghwal P.R., Sahu P.M., Singh S. Anti-inflammatory activity of shikonin derivatives from Arnebia hispidissima II Phytomedicine. 2003. -Vol. 10, N 5. — P. 375−380.
  115. Singh В., Sahu P.M., Jain S.C., Singh S. Estimation of naphthaquinones from Arnebia hispidissima (Lehm.) DC. in vivo and in vitro. I. Anti-inflammatory screening // Phytother. Res. 2004. — Vol. 18, N 2. — P. 154−159.
  116. Л.P., Шубина Л. С. Бензо-, нафто- и антрахиноны цветковых растений как антимикробные вещества // Раст. ресурсы. 1975. — Т. 11, вып. 3. с. 445−454.
  117. Fujii N., Yamashita Y., Arima Y., Nagashima M., Nakano H. Induction of topoisomerase ll-mediated DNA cleavage by the plant naphthoquinones plumbagin and shikonin // Antimicrob. Agents Chemother. 1992. — Vol. 36, N 12. — P. 25 892 594.
  118. Tanaka Y., Odani T. Pharmacodynamic study on «Shiunko». I. Antibacterial effect of «Shiunko» // Yakugaku Zasshi. 1972. — Vol. 92, N 5. — P. 525−530.
  119. Tabata M., Mizukami H., Naoe S., Konoshima M. Antimicrobial activity of Lithospermum erythrorhizon callus cultures //Yakugaku Zasshi. 1975. — Vol. 95, N 11.-P. 1376−1379.
  120. Brigham L.A., Michaels P.J., Flores H.E. Cell-specific production and antimicrobial activity of naphthoquinones in roots of Lithospermum erythrorhizon II Plant Physiol. 1999. — Vol. 119, N 2. — P. 41728.
  121. Jain S.C., Jain R., Singh B. Antimicrobial principles from Arnebia hispidissima II Pharm. Biol. 2003. — Vol. 41, N 4. — P. 231−233.
  122. Honda G., Sakakibara F., Yazaki K., Tabata M. Isolation of deoxyshikonin, an antidermatophytic principle from Lithospermum erythrorhizon cell cultures // J. Nat. Prod. 1988. — Vol. 57, N 1. — P. 152−154.
  123. Rajbhandari M., Schoepke Th., Mentel R., Lindequist U. Antibacterial and antiviral naphthazarins from Maharanga bicolor// Pharmazie. 2007. — Vol. 62, N 8. — P. 633−635.
  124. Li C., Fukushi Y., Kawabata J., Tahara S., Mizutani J., Uyeda I. Antiviral and antifungal activities of some naphthoquinones isolated from the roots of Lithospermum erythrorhizon // J. Pesticide Sci. 1998. — Vol. 23, N 1. — P. 54−57.
  125. Greenberg E.P., Banin E. Ironing out the biofilm problem: the role of iron in biofilm formation // Control of Biofilm Infections by Signal Manipulation / Ed. Balaban N. Springer Ser. on Biofilm. — 2007. — Vol. 2. — P. 141−156.
  126. BjarnsholtT., Kirketerp-Moller K., Jensen P.O., Madsen K.G., Phipps R., Krogfelt K., Hoiby N., Givskov M. Why chronic wounds will not heal: a novel hypothesis // Wound Repair Regen. 2008. — Vol. 16, N 1.-P. 2−10.
  127. Sekine T., Masumizu T., Maitani Y., Takayama K., Kohno M., Nagai T. Effect of shikonin and alkannin on hydroxyl radical generation system concerned with iron ion // Yakugaku Zasshi. 1998. — Vol. 118, N 12. — P. 609−615.
  128. Gao D., Kakuma M., Oka S., Sugino K., Sakurai H. Reaction of (B-alkannin (shikonin) with reactive oxygen species: detection of (3-alkannin free radicals // Bioorg. Med. Chem. 2000. — Vol. 8, N 11. — P. 2561−2569.
  129. Sekine T., Kojima K., Sasaki S., Matsumoto T., Yamamoto T., Maitani Y., Nagai T. Evaluation of antibacterial effect of shikonin ointment against methicillin-resistant Staphylococcus aureus IISTP Pharma Sci. 1998. — Vol. 8, N 4. — P. 255−259.
  130. Sekine T., Masumizu T., Maitani Y., Nagai T. Evaluation of superoxide anion radical scavenging activity of shikonin by electron spin resonance // Intern. J. Pharm. -1998.-Vol. 174, N 1−2.-P. 133−139.
  131. Locksley R.M., Killeen N., Lenardo M.J. The TNF and TNF receptor superfamilies: integrating mammalian biology // Cell. 2001. — Vol. 104, N 4. — P. 487−501.
  132. Chiu S.-C., Yang N.-S. Inhibition of tumor necrosis factor-a through selective blockade of pre-mRNA splicing by shikonin // Mol. Pharmacol. 2007. — Vol. 71, N 6. — P. 1640−1645.
  133. Feldmann M., Maini R.N. Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned?//Annu. Rev. Immunol.-2001.-Vol. 19.-P. 163−196.
  134. Palladino M.A., Bahjat F.R., Theodorakis E.A., Moldawer L.L. Anti-TNF-alpha therapies: the next generation // Nat. Rev. Drug. Discov. 2003. — Vol. 2, N 9. — P. 736−746.
  135. Subbaramaiah K., Bulic P., Lin Y., Dannenberg A.J., Pasco D.S. Development and use of a gene promoter-based screen to identify novel inhibitors of cyclooxygenase-2 transcription // J. Biomol. Screen. 2001. — Vol. 6, N 2. — P. 101 110.
  136. Assimopoulou A.N., Boskou D., Papageorgiou V.P. Antioxidant activities of alkannin, shikonin and Alkanna tinctoria root extracts in oil substrates // Food Chem. 2004. — Vol. 87, N 3. — P. 433−438.
  137. Assimopoulou A.N., Papageorgiou V.P. Radical scavenging activity of Alkanna tinctoria root extracts and their main constituents, hydroxynaphthoquinones // Phytother. Res. -2005. Vol. 19, N 2. — P. 141−147.
  138. Nishizawa M., Kohno M., Nishimura M., Kitagawa A., Niwano Y. Presence of peroxyradicals in cigarette smoke and the scavenging effect of shikonin, a naphthoquinone pigment // Chem. Pharm. Bull. 2005. — Vol. 53, N 7. — P. 796 799.
  139. Katti S.B., Shukla Y.N., Tandon J.S. Arnebin derivatives for anticancer activity // Indian J. Chem. Pt. B. Org. Incl. Med. 1979. — Vol. 18, N 5. — P. 440−442.
  140. Wagner H., Kreher В., Jurcic K. In vitro stimulation of human granulocytes and lymphocytes by pico- and femtogram quantities of cytostatic agents // Arzneimittelforschung. 1988. — Vol. 38, N 2. — P. 273−275.
  141. Lee H., Lin J.Y. Antimutagenic activity of extracts from anticancer drugs in Chinese medicine // Mutat. Res. 1988. — Vol. 204, N 2. — P. 229−234.
  142. Miller M.G., Rodgers A., Cohen G.M. Mechanisms of toxicity of naphthoquinones to isolated hepatocytes // Biochem. Pharmacol. 1986. — Vol. 35, N 7. — P. 11 771 184.
  143. Moore H.W. Bioactivation as a model for drug design bioreductive alkylation // Science. 1977. — Vol. 197, N 4303. — P. 527−532.
  144. Singh R., Tandon V.K., Khanna J.M., Anand N. Studies on anticancer agents: some 2-substituted naphthoquinones, naphthazarins and 8-chIorojuglones // Indian J. Chem. Pt. B. Org. Incl. Med. 1977. — Vol. 15, N 10. — P. 970−971.
  145. Ahn B.-Z., Baik K.-U., Kweon G.-R., Lim K., Hwang B.-D. Acylshikonin analogues: synthesis and inhibition of DNA topoisomerase-l // J. Med. Chem. -1995. Vol. 38, N 6. — P. 1044−1047.
  146. Papageorgiou V.P. Wound healing properties of naphthaquinone pigments from Alkanna tinctorialI Experientia. 1978. — Vol. 34, N 11. — P. 1499−1501.
  147. Michaelides C., Striglis C., Panayiotou P., loannovich J. The therapeutic action of Alkanna root extract in the conservative treatment of partial-thickness burn injuries // Ann. Medit. Burns Club. 1993. — Vol. 6, N 1. — P. 24−25.
  148. Sakaguchi I., Tsujimura M., Ikeda N., Minamino M., Kato Y., Watabe K., Yano I., Kaneda K. Granulomatous tissue formation of shikon and shikonin by air pouch method // Biol. Pharm. Bull. 2001. — Vol. 24, N 6. — P. 650−655.
  149. Sidhu G.S., Singh A.K., Banaudha K.K., Gaddipati J.P., Patnaik G.K., Maheshwari R.K. Arnebin-1 accelerates normal and hydrocortisone-induced impaired wound healing // J. Invest. Dermatol. 1999. — Vol. 113, N 5. — P. 773 781.
  150. Mani H., Sidhu G.S., Singh A.K., Gaddipati J., Banaudha K.K., Raj K., Maheshwari R.K. Enhancement of wound healing by shikonin analogue 93/637 in normal and impaired healing // Skin Pharmacol. Physiol. 2004. — Vol. 17, N 1. — P. 49−56.
  151. Pei X.-W., Wang K.-Z., Dang X.-Q., Song J.-H., Shi Z.-B., Gao D.-F. Arnebia root oil promotes wound healing and expression of basic fibroblast growth factor on the wound surface in rabbits // J. Chin. Integr. Med. 2006. — Vol. 4, N 1. — P. 52−55.
  152. Graham R.C.B., Noble R.L. Comparison of in vitro activity of various species of Lithospermum and other plant to inactivate gonadotrophin // Endocrinology. 1955. -Vol. 56, N 3. — P. 239−247.
  153. Breneman W.R., Zeller F.J. Lithosperm inhibition of anterior pituitary hormones // Biochem. Biophys. Res. Commun. 1975. — Vol. 65, N 3. — P. 1047−1053.
  154. Breneman W.R., Zeller F.J., Carmack M., Kelley C.J. In vivo inhibition of gonadotropins and thyrotropin in the chick by extracts of Lithospermum ruderale II Gen. Comp. Endocrinol. 1976. — Vol. 28, N 1. — P. 24−32.
  155. И.С., Шухободский Б. А., Ключникова Л. А., Дильман В. М., Аппацкая Э. П. Исследование некоторых представителей сем. Бурачниковых как источников получения физиологически-активных веществ // Раст. ресурсы. -1970. Т. 6, вып. 3. — С. 345−350.
  156. В.М., Кожина И. С., Ключникова Л. А., Кибальчич П. Н., Кусов Ю. Ю. Исследование свойств и состава воробейника лекарственного. Перспективы использования в онкологии // Вопр. онкологии. 1968. — Т. 16, № 7. — С. 86−91.
  157. Wagner Н., Wittman D., Schafer W. Zur chemischen struktur der Lithospermsaure aus Lithospermum officinale L. II Tetrahedron Lett. 1975. — Vol. 16, N8.- P. 547−550.
  158. Kelley C.J., Harruff R.C., Carmack M. The polyphenol^ acids of Lithospermum ruderale. II. Carbon-13 nuclear magnetic resonance of lithospermic and rosmarinic acids //J. Org. Chem. 1976. — Vol. 41, N 3. — P. 449−455.
  159. Fukui H., Yazaki K., Tabata M. Two phenolic acids from Lithospermum erythrorhizon cell suspension cultures // Phytochemistry. 1984. — Vol. 23, N 10. -P. 2398−2399.
  160. Yamamoto H., Inoue K., Yazaki K. Caffeic acid oligomers in Lithospermum erythrorhizon cell suspension cultures // Phytochemistry. 2000. — Vol. 53, N 6. — P. 651−657.
  161. Agata I., Hatano T., Nishibe S., Okuda T. Rabdosiin, a new rosmarinic acid dimer with a lignan skeleton, from Rabdosia japonica II Chem. Pharm. Bull. 1988. — Vol. 36, N 8. — P. 3223−3225.
  162. Agata I., Hatano T., Nishibe S., Okuda T. A tetrameric derivative of caffeic acid from Rabdosia japonica // Phytochemistry. 1989. — Vol. 28, N 9. — P. 2447−2450.
  163. Nishizawa M., Tsuda M., Havashi K. Two caffeic acid tetramers having enantiomeric phenyldihydronaphthalene moieties from Macrotomia euchroma II Phytochemistry. 1990. — Vol. 29, N 8. — P. 2645−2649.
  164. Petersen M., Simmonds M.S.J. Rosmarinic acid // Phytochemistry. 2003. — Vol. 62, N2.-P. 121−125.
  165. Satake T., Kamiya K., Saiki Y., Hama T., Fugimoto Y., Kitanaka S., Kimura Y., Uzava J., Endang H., Umara M. Studies on the constituents of fruits of Helicteres isora L. // Chem. Pharm. Bull. 1999. — Vol. 47, N 10. — P. 1444−1447.
  166. Lu Y., Foo L.Y. Rosmarinic acid derivatives from Salvia officinalis II Phytochemistry. 1999. — Vol. 51, N 1. — P. 91−94.
  167. Lu Y., Foo L.Y., Wong H. Sagecoumarin, a novel caffeic acid trimer from Salvia officinalis II Phytochemistry. 1999. — Vol. 52, N 6. — P. 1149−1152.
  168. Tanaka T., Nishimura A., Kouno I., Nonaka G.-i., Young T.-J. Isolation and characterization of yunnaneic acids A-D, four novel caffeic acid metabolites from Salvia yunnanensis II J. Nat. Prod. 1996. — Vol. 59, N 9. — P. 843−849.
  169. Tanaka T., Nishimura A., Kouno I., Nonaka G.-i., Young C.-R. Four new caffeic acid metabolites, yunnaneic acids E-H, from Salvia yunnanensis II Chem. Pharm Bull. 1997. — Vol. 45, N 10. — P. 1596−1600.
  170. Al-Sereiti M.R., Abu-Amer K.M., Sen P. Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potential // Indian J. Exp. Biol. 1999. — Vol. 37, N2.-P. 124−130.
  171. Winterhoff H., Gumbinger H.-G., Sourgens H. On the antigonadotropic activity of Lithospermum and Lycopus species and some of their phenolic constituents // Pianta Med. 1988. — Vol. 54, N 2. — P. 101−106.
  172. Ahn S.C., Oh W.K., Kim B.Y., Kang D.O., Kim M.S., Heo G.Y., Ahn J.S. Inhibitory effects of rosmarinic acid on Lck SH2 domain binding to a synthetic phosphopeptide // Pianta Med. 2003. — Vol. 69, N 7. — P. 642−646.
  173. Kang M.-A., Yun S.-Y., Won J. Rosmarinic acid inhibits Ca2±dependent pathways of T-cell antigen receptor-mediated signaling by inhibiting the PLC-y1 and Itk activity // Blood. 2003. — Vol. 101, N 9. — P. 3534−3542.
  174. Bors W., Michel C., Stettmaier K., Lu Y., Foo L.Y. Pulse radiolysis, electron paramagnetic resonance spectroscopy and theoretical calculations of caffeic acid oligomer radicals// Biochim. Biophys. Acta. -2003. Vol. 1620, N 1−3. — P. 97−107.
  175. Youn J., Lee K.-H., Won J., Huh S.-J., Yun H.-S., Cho W.-G., Paik D.-J. Beneficial effect of rosmarinic acid on suppression of collagen induced arthritis // J. Rheumatol. -2003. Vol. 30, N 6. — P. 1203−1207.
  176. Ito H., Miyazaki T., Ono M., Sakurai H. Antiallergic activities of rabdosiin and its related compounds: chemical and biochemical evaluations // Bioorg. Med. Chem. -1998. Vol. 6, N 7. — P. 1051−1056.
  177. Yamamoto H., Zhao P., Yazaki K., Inoue K. Regulation of lithospermic acid B and shikonin production in Lithospermum erythrorhizon cell suspension cultures // Chem. Pharm. Bull.-2002.-Vol. 50, N 8.-P. 1086−1090.
  178. Kamata K., Noguchi M., Nagai M. Hypotensive effect of lithospermic acid B isolated from the extract of Salviae miltiorrhizae Radix in the rat I I Gen. Pharmacol. -1994. Vol. 25, N 1. — P. 69−73.
  179. Ellis B.E., Towers G.H.N. Biogenesis of rosmarinic acid in Mentha II Biochem. J.- 1970. Vol. 118, N 2. — P. 291−297.
  180. De-Eknamkul W., Ellis B.E. Tyrosine aminotransferase: the entrypoint enzyme of the tyrosine-derived pathway in rosmarinic acid biosinthesis // Phytochemistry. -1987. Vol. 26, N 7. — P. 1941−1946.
  181. Petersen M. Cytochrome P450-dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus II Phytochemistry. 1997. — Vol. 45, N 6. — P. 1165−1172.
  182. Harborne J.B., Williams C.A. Advances in flavonoid research since 1992 // Phytochemistry. 2000. — Vol. 55, N 6. — P. 481−504.
  183. Donnelly D.M.X., Boland G.M. Isoflavonoids and neoflavonoids: naturally occurring O-heterocycles // Nat. Prod. Rep. 1995. — Vol. 12, N 3. — P. 321−338.
  184. Veitch N.C. Isoflavonoids of the Leguminosae // Nat. Prod. Rep. 2007. — Vol. 24, N2.-P. 417−464.
  185. Tanaka T., Ohyama M., linuma M., Shirataki Y., Komatsu M., Burandt C.L. Isoflavonoids from Sophora secundiflora, S. arizonica and S. gypsophila // Phytochemistry. 1998. — Vol. 48, N 7. — P. 1187−1193.
  186. Chacha M., Bojase-Moleta G., Majinda R.R.T. Antimicrobial and radical scavenging flavonoids from the stem wood of Erythrina latissima II Phytochemistry.- 2005. Vol. 66, N 1. — P. 99−104.
  187. Tahara S., Ibrahim R.K. Prenylated isoflavonoids an update // Phytochemistry.- 1995. Vol. 38, N 5. — P. 1073−1094.
  188. Rao J.R., Rao R.S. Dalpaniculin, a C-glycosylisoflavone from Dalbergia paniculata seeds // Phytochemistry. 1991. — Vol. 30, N 2. — P. 715−716.
  189. Chawla H.M., Chibber S.S., Seshadri T.R. Volubilinin, a new isoflavone-C-glycoside from Dalbergia volubilis flowers // Phytochemistry. 1976. — Vol. 15, N 1.- P. 235−237.
  190. Park H.-J., Park J.-H., Moon J.-O., Lee K.-T., Jung W.-T., Oh S.-R., Lee H.-K. Isoflavone glycosides from the flowers of Pueraria thunbergiana II Phytochemistry. -1999.-Vol. 51, N 1.-P. 147−151.
  191. Ma W.G., Fukushi Y., Hostettmann K., Tahara S. Isoflavonoid glycosides from Eriosema tuberosum II Phytochemistry. 1998. — Vol. 49, N 1. — P. 251−254.
  192. Nomenclature of organic chemistry / Eds.: Rigaudy J., Klesney S.P. Oxford et. al.: Pergamon Press, 1979. — P. 53−72.
  193. Brooks C.J.W., Watson D.G. Phytoalexins // Nat. Prod. Rep. 1985. — Vol. 2, N 5. — P. 427−459.
  194. Phillips D.A., Kapulnik Y. Plant isoflavonoids, pathogens and symbionts // Trends Microbiol. 1995. — Vol. 3, N 2. — P. 58−64.
  195. Boland G.M., Donnelly D.M.X. Isoflavonoids and related compounds // Nat. Prod. Rep. 1998. — Vol. 15, N 3. — P. 241−260.
  196. Iwashina T. The structure and distribution of the flavonoids in plants // J. Plant Res. 2000. — Vol. 113, N 3. — P. 287−299.
  197. Reynaud J., Guilet D., Terreux R., Lussignol M., Walchshofer N. Isoflavonoids in non-leguminous families: an update // Nat. Prod. Rep. 2005. — Vol. 22, N 4. — P. 504−515.
  198. Mackova Z., Koblovska R., Lapcik O. Distribution of isoflavonoids in non-leguminous taxa an update // Phytochemistry. — 2006. — Vol. 67, N 9. — P. 849 855.
  199. Chen L.J., Zhao X., Plummer S., Tang J., Games D.E. Quantitative determination and structural characterization of isoflavones in nutrition supplements by liquid chromatography-mass spectrometry//J. Chromatogr. A. -2005. Vol. 1082, N 1−2.- P. 60−70.
  200. Andlauer W., Martena M.J., Furst P. Determination of selected phytochemicals by reversed-phase high-performance liquid chromatography combined with ultraviolet and mass spectrometric detection // J. Chromatogr. A. 1999. — Vol. 849, N 2. — P. 341−348.
  201. Tsao R., Papadopoulos Y., Yang R., Yong J. C., McRae K. Isoflavone profiles of red clovers and their distribution in different parts harvested at different growing stages // J. Agric. Food Chem. 2006. — Vol. 54, N 16. — P. 5797−5805.
  202. Fang N., Yu S., Badger T.M. Characterization of isoflavones and their conjugates in female rat urine using LC/MS/MS //J. Agric. Food Chem. 2002. — Vol. 50, N 9. -P.2700−2707.
  203. Wiseman H., Casey K., Clarke D.B., Barnes K.A., Bowey E. Isoflavone aglycon and glucoconjugate content of high- and low-soy U.K. foods used in nutritional studies // J. Agric. Food Chem. 2002. — Vol. 50, N 6. — P. 1404−1410.
  204. Krenn L., Unterrieder I., Ruprechter R. Quantification of isoflavones in red clover by high-performance liquid chromatography // J. Chromatogr. B. 2002. — Vol. 777, N 1−2.-P. 123−128.
  205. Wu Q., Wang M., Simon J.E. Determination of isoflavones in red clover and related species by high-performance liquid chromatography combined with ultraviolet and mass spectrometric detection // J. Chromatogr. A. 2003. — Vol. 1016, N2.-P. 195−209.
  206. Yang F., Ma Y., Ito Y. Separation and purification of isoflavones from a crude soybean extract by high-speed counter-current chromatography // J. Chromatogr. A. -2001.-Vol. 928, N 2.-P. 163−170.
  207. Tanaka H., Oh-Uchi T., Etoh H., Sako M., Sato M., Fukai T., Tateishi Y. An arylbenzofuran and four isoflavonoids from the roots of Erythrina poeppigiana II Phytochemistry. 2003. — Vol. 63, N 5. — P. 597−602.
  208. Wandji J., Awanchiri S., Fomum Z.T., Tillequin F., Libot F. Isoflavones and alkaloids from the stem bark and seeds of Erythrina senegalensis II Phytochemistry. -1995.-Vol. 39, N 3. P. 677−681.
  209. Nkengfack A.E., Vouffo T.W., Vardamides J.C., Kouam J., Fomum Z.T., Meyer M., Sterner O. Phenolic metabolites from Erythrina species // Phytochemistry. -1997. Vol. 46, N 3. — P. 573−578.
  210. Tanaka H., Tanaka T., Hosoya A., Kitade Y., Etoh H. An isoflavan from Erythrinaxbidwillii II Phytochemistry. 1998. — Vol. 47, N 7. — P. 1397−1400.
  211. Vetter J. Isoflavones in different parts of common Trifolium species // J. Agric. Food Chem. 1995. — Vol. 43, N 1. — P. 106−108.
  212. Wang S., Ghisalberti E.L., Ridsdill-Smith J. Bioactive isoflavonols and other components from Trifolium subterraneum II J. Nat. Prod. 1998. — Vol. 61, N 4. — P. 508−510.
  213. Palazzinoa G., Rasoanaivo P., Federici E., Nicoletti M., Galeffi C. Prenylated isoflavonoids from Millettia pervilleana II Phytochemistry. 2003. — Vol. 63, N 4. — P.471.474.
  214. Abd El-Latif R.R., Shabana M.H., El-Gandour A.H., Mansour R.M., Sharaf M. A new isoflavone from Astragalus peregrinus II Chem. Nat. Compd. 2003. — Vol. 39, N 6. — P. 536−537.
  215. Maver M., Queiroz E. F., Wolfender J.-L., Hostettmann K. Flavonoids from the stem of Eriophorum scheuchzeri II J. Nat. Prod. 2005. — Vol. 68, N 7. — P. 10 941 098.
  216. Chang C.-H., Lin C.-C., Kadota S., Hattori M., Namba T. Flavonoids and a prenylated xantone from Cudrania cochinchinensis var. gerontogea H Phytochemistry. 1995. — Vol. 40, N 3. — P. 945−947.
  217. Lopes N.P., Kato M.J., Yoshida M. Antifungal constituents from roots of Virola surinamensis II Phytochemistry. 1999. — Vol. 51, N 1. — P. 29−31.
  218. Talukdar A.C., Jain N., De S., Krishnamurty H.G. An isoflavone from Myristica malabarica II Phytochemistry. 2000. — Vol. 53, N 1. — P. 155−157.
  219. Messanga B.B., Kimbu S.F., Sondengam B.L., Bodo B. Triflavonoids of Oehna calodendron II Phytochemistry. 2002. — V. 59, N 4. P. 435−438.
  220. Shawl A.S., Kumar T. Isoflavonoids from Iris crocea II Phytochemistry. 1992. -Vol. 31, N4.-P. 1399−1401.
  221. Sanduja R., Martin G.E., Weinheimer A.J., Alam M., Hossain M.B., van der Helm D. Secondary metabolites of the coelenterate Echinopora lamellosa // J. Heterocycl. Chem. 1984. — Vol. 21, N 3. — P. 845−848.
  222. Anhut S., Zinsmeister H.D., Mues R., Barz W., Mackenbrock К., Koster J., Markham K.R. The first identification of isoflavones from a bryophyte // Phytochemistry. 1984. — Vol. 23, N 5. — P. 1073−1075.
  223. Delmonte P., Perry J., Rader J.I. Determination of isoflavones in dietary supplements containing soy, red clover and kudzu: extraction followed by basic or acid hydrolysis // J. Chromatogr. A. 2006. — Vol. 1107, N 1−2. — P. 59−69.
  224. Л.М., Серебрякова А. П. Гликозиды изофлавонов Piptanthus nanus М. Pop. //Химия природ, соединений. 1965. — № 1. — С. 70−72.
  225. Toebes A.H.W., de Boer V., Verkleij J.A.C., Lingeman H., Ernst W.H.O. Extraction of isoflavone malonylglucosides from Trifolium pratense L. // J. Agric. Food Chem. 2005. — Vol. 53, N 12. — P. 4660666.
  226. Park H.-H., Hakamatsuka Т., Noguchi H., Sanakawa U., Ebizuka Y. Isoflavone glucosides exist as their 6"-0-malonyl esters in Pueraria lobata and its cell suspension cultutes // Chem. Pharm. Bull. 1992. — Vol. 40, N 7. — P. 1978−1980.
  227. Chkadua N.F., Alanlya M.D., Kemertelidze Ё.Р. Flavonoids of the rhizomes of Pueraria hirsuta И Chem. Nat. Compd. 1996. — Vol. 32, N 6. — P. 920.
  228. Rong H., Stevens J.F., Deinzer M.L., De Cooman L., De Keukeleire D. Identification of isoflavones in the roots of Pueraria lobata II Planta Med. 1998. -Vol. 64, N 7. — P. 620−627.
  229. Wang C.-Y., Hang H.-Y., Kuo K.-L., Hsieh Y.-Z. Analysis of Puerariae radix and its medicinal preparations by capillary electrophoresis // J. Chromatogr. A. 1998. -Vol. 802, N 1. — P. 225−231.
  230. Yuldashev M.P., Batirov E.Kh., Malikov V.M., Yuldasheva N.P. Flavonoids of Psoralea drupaceae and Reseda luteola II Chem. Nat. Compd. 1996. — Vol. 32, N 6. — P. 923−924.
  231. Caballero P., Smith C.M., Fronczek F.R., Fischer N.H. Isoflavones from an insect-resistant variety of soybean and the molecular structure of afrormosin // J. Nat. Prod.-1986.-Vol. 49, N 6. P. 1126−1129.
  232. Federici E., Touche A., Choquart S., Avanti O., Fay L., Offord E., Courtois D. High isoflavone content and estrogenic activity of 25 year-old Glycine max tissue cultures // Phytochemistry. 2003. — Vol. 64, N 3. — P. 717−724.
  233. Hosny M. Rosazza J.P.N. New isoflavone and triterpene glycosides from soybeans // J. Nat. Prod. 2002. — V. 65, N 6. — P. 805−813.
  234. Watanabe K., Kinjo J., Nohara T. Three new isoflavonoid glycosides from Lupinus luteus and L. polyphyllus*arboreus II Chem. Pharm. Bull. 1993. — Vol. 41, N 2. — P. 394−396.
  235. Dini I., Schettino O., Dini A. Studies on the constituents of Lupinus mutabilis (Fabaceae). Isolation and characterization of two new isoflavonoid derivatives // J. Agrie. Food Chem. 1998. — Vol. 46, N 12. — P. 5089−5092.
  236. Ferrer M.A., Pedreno M.A., Munoz R., Ros Barceel A. Constitutive isoflavones as modulators indole-3-acetic acid oxidase activity of acidic cell wall isoperoxidases from lupin hypocotyls // Phytochemistry. 1992. — Vol. 31, N 11. — P. 3681−3684.
  237. Gagnon H., Ibrahim R.K. Effects of elisitors on the accomulation and secretion of isoflavonoids in white lupin // Phyrochemistry. 1997. — Vol. 44, N 8. — P. 14 631 467.
  238. Kinoshita T" Ichinose K., Takahashi C., Ho F.-C., Wu J.-B., Sankawa U. Chemical studies on Sophora tomentosa: the isolation of a new class of isoflavonoids // Chem. Pharm. Bull. 1990. — Vol. 38, N 10. — P. 2756−2759.
  239. Yamamoto H., Ichimura M., Tanaka T., linuma M., Mizuno M. A trifolirhizin malonate from Sophora flavescens var. Angustifolia and its stability // Phytochemistry. 1991. — Vol. 30, N 5. — P. 1732−1733.
  240. Lee H.-J., Lee O.-K., Kwon Y.-H., Choi D.-H., Kang H.-Y., Lee H.-Y., Paik K.-H., Lee H.-J. Isoflavone glycosides from the bark of Amorpha fruticosa II Chem. Nat. Compd. 2006. -Vol. 42, N 4. — P. 415−418.
  241. Herath H.M.T.B., Dassanayake R.S., Priyadarshani A.M.A., De Silva S., Wannigama G.P., Jamie J. Isoflavonoids and a pterocarpan from Gliricidia sepium // Phytochemistry.-1998.-Vol.47, N 1. P. 117−119.
  242. Markham K.R., Swift W.T., Mabry T.J. New isofiavone glycoside from Baptisia australis II J. Org. Chem. 1968. — Vol. 33, N 1. — P. 462−464.
  243. Markham K.R., Mabry T.J., Swift T.W. New isoflavones from the genus Baptisia (Leguminosae) // Phytochemistry. 1968. — Vol. 7, N 5. — P. 803−808.
  244. С.С., Батуров Е. К., Киамитдинова Ф., Маликов М. Isoflavonoids of Cicer mogoltavicum II Химия природ, соединений. 1986. — № 5. — С. 603−604.
  245. Stevenson Р.С., Veitch N.C. Isoflavenes from the roots of Cicer judaicum II Phytochemistry. 1996. — Vol. 43, N 3. — P. 695−700.
  246. McMurry T.B.H., Martin E., Donnelly D.M.X., Thompson J.C. 3-Hydroxy-9-methoxy and 3-methoxy-9-hydroxypterocarpans // Phytochemistry. 1972. — Vol. 11, N 11.-P. 3283−3286.
  247. Yahara S., Ogata Т., Saijo R., Konishi R., Yamahara J., Miyahara K., Nohara T. Isoflavan and related compounds from Dalbergia odorifera. I // Chem. Pharm. Bull. -1989. Vol. 37, N 4. — P. 979−987.
  248. Ramesh P., Yuvarajan C.R. Coromandelin, a new isofiavone apioglucoside from the leaves of Dalbergia coromandeliana И J. Nat. Prod. 1995. — Vol. 58, N 8. — P. 1240−1241.
  249. Khan I.A., Avery M.A., Burandt C.L., Goins D.K., Mikell J.R., Nash Т.Е., Azadegan A., Walker L.A. Antigiardial activity of isoflavones from Dalbergia frutescens bark//J. Nat. Prod. -2000. Vol. 63, N 10. — P. 1414−1416.
  250. Farag S.F., Ahmed A.S., Terashima K., Takaya Y., Niwa M. Isoflavonoid glycosides from Dalbergia sissoo II Phytochemistry. 2001. — Vol. 57, N 8. — P. 1263−1268.
  251. Ito C., Itoigawa M., Kanematsu Т., Ruangrungsi N., Mukainaka Т., Tokuda H., Nishino H., Furukawa H. Isoflavonoids from Dalbergia olivari II Phytochemistry. -2003. Vol. 64, N 7. — P. 1265−1268.
  252. Maximo P., Lourengo A. A pterocarpan from Ulex parviflorus И Phytochemistry. -1998. Vol. 48, N 2. — P. 359−362.
  253. Chaudhuri S.K., Fullas F., Wani M.C., Wall M.E., Tucker J.C., Beecher C.W.W., Kinghorn A.D. Two isoflavones from the bark of Petalostemon purpureus II Phytochemistry. 1996. — Vol. 41, N 3. — P. 945−946.
  254. Chibber S.S., Sharma R.P. Derrone, a new pyranoisoflavone from Derris robusta seeds // Phytochemistry. 1980. — Vol. 19, N 8. — P. 1857−1858.
  255. Laupattarakasem P., Houghton P.J., Hoult J., Robin S. Anti-inflammatory isoflavonoids from the stems Derris scandens II Planta Med. 2004. — Vol. 70, N 6. -P. 496−501.
  256. Mahabusarakam W., Deachathai S., Phongpaichit S., Jansakul C., Taylor W.C. A benzil and isoflavone derivatives from Derris scandens Benth. // Phytochemistry. -2004. Vol. 65, N 8. — P. 1185−1191.
  257. Coronado C., Zuanazzi J.A.S., Sallaud C., Quirion J.C., Esnault R., Husson H.P., Kondorosi A., Ratet P. Alfalfa root flavonoid production is nitrogen regulated // Plant Physiol. 1995. — Vol. 108, N 2. — P. 533−542.
  258. He X.-Z., Reddy J.T., Dixon R.A. Stress responses in alfalfa (Medicago sativa L). XXII. cDNA cloning and characterization of an elicitor-inducible isoflavone 7−0-methyltransferase // Plant Mol. Biol. 1998. — Vol. 36, N 1. — P. 43−54.
  259. Daniell T., O’Hagon D, Edwards R. Alfalfa cell cultures treated with fungal elicitor accumulate flavone metabolites rather than isoflavones in the presence of the methylation ingibitor tubericidin // Phytochemistry. 1997. — Vol. 44, N 2. — P. 285 291.
  260. Keung W.-M., Vallee B.L. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase // Proc. Natl. Acad. Sci. U.S.A. 1993. -Vol. 90, N4.-P. 1247−1251.
  261. Liu Y., Chen H.-B., Zhao Y.-Y., Wang B., Zhang Q.-Y., Zhang L" Tu P. Quantification and stability studies on the flavonoids of Radix hedysari II J. Agric. Food Chem. -2006. Vol. 54, N 18. — P. 6634−6639.
  262. Stacker P., Yousfi M., Salmi C., Perrier J., Brunei J.M., Moulin A. Maackiain 3−0-(6'-0-malonyl-b-D-glucopyranoside) from Oudneya africana, a powerful inhibitor of porcine kidney acylase I // Biochimie. 2005. — Vol. 87, N 6. — P. 507−512.
  263. Qin M.-J., Ji W.-L., Wang Z.-T., Ye W.-C. A new isoflavonoid from Belamcanda chinensis (L.) DC // J. Integr. Plant Biol. 2005. — Vol. 47, N 11. — P. 1404−1408.
  264. Valderrama J.C.M. Distribution of flavonoids in the Myristicaceae // Phytochemistry. 2000. — Vol. 55, N 6. — P. 505−511.
  265. Lapcik O., Klejdus B., Davidova M., Kokoska L., Kuban V., Moravcova J. Isoflavonoids in the Rutaceae family: 1. Fortunella obovata, Murraya paniculata and four Citrus species // Phytochem. Anal. 2004. — Vol. 15, N 5. — P. 293−299.
  266. Puripattanavong J., Weber S., Brecht V., Frahm A.W. Phytochemical investigation of Aglaia andamanica II Planta Med. 2000. — Vol. 66, N 8. — P. 740 745.
  267. Matsuda H., Morikawa T., Xu F., Ninomiya K., Yoshikawa M. New isoflavones and pterocarpane with hepatoprotective activity from the stems of Erycibe expansa II Planta Med.-2004.-Vol. 70, N 12.-P. 1201−1209.
  268. McCormick S., Robson K., Bohm B. Flavonoids of Wyethia angustifolia and W. helenioides II Phytochemistry. 1986. — Vol. 25, N 7. — P. 1723−1726.
  269. Al-Khalil S., Al-Eisawi D., Kato M., linuma M. New isoflavones from Iris nigricans II J. Nat. Prod.-1994.-Vol. 57, N2.-P. 201−205.
  270. Choudhary M.I., Kharim S., Tashkhodzhaev B., Turgunov K.K., Sultankhodzhaev M.N., Atta-ur-Rahman, Israr M. Crystal and molecular structure of the isoflavones irilin B and betavulgarin // Chem. Nat. Compd. 2005. — Vol. 41, N 4. — P. 396−399.
  271. Atta-ur-Rahman, Nasim S., Baig I., Ara Jahan I., Sener B., Orhan I., Choudhary M.I. Isoflavonoid glycosides from the rhizomes of Iris germanica II Chem. Pharm. Bull. 2002. — Vol. 50, N 8. — P. 1100−1102.
  272. Minami H., Okubo A., Kodama M., Fukuyama Y. Highly oxygenated isoflavones from Iris japonica II Phytochemistry. 1996. — Vol. 41, N 4. — P. 1219−1221.
  273. Purev O., Purevsuren C., Narantuya S., Lkhagvasuren S., Mizukami H., Nagatsu A. New isoflavones and flavanol from Iris potaninii II Chem. Pharm. Bull. 2002. — ¦ Vol. 50, N 10.-P. 1367−1369.
  274. Farag S.F., Backheet E.Y., El-Emary N.A., Niwa M. Isoflavonoids and flavone glycosides from rhizomes of Iris carthaliniae II Phytochemistry. 1999. — Vol. 50, N 8.-P. 1407−1410.
  275. Murphy P.A., Barua K., Hauck C.C. Solvent extraction selection in the determination of isoflavones in soy foods // J. Chromatogr. B. 2002. — Vol. 777, N 1−2.-P. 129−138.
  276. Rostagno M.A., Palma M., Barroso C.G. Ultrasound-assisted extraction of soy isoflavones //J. Chromatogr. A. 2003. — Vol. 1012, N 2. — P. 119−128.
  277. Mathias K., Ismail B., Corvalan C.M., Hayes K.D. Heat and pH effects on the conjugated forms of genistin and daidzin isoflavones // J. Agric. Food Chem. 2006. -Vol. 54, N 20. — P. 7495−7502.
  278. Schijlen E.G.W.M., de Vos C.H.R., van Tunen A.J., Bovy A.G. Modification of flavonoid biosynthesis in crop plants // Phytochemistry. 2004. — Vol. 65, N 19. — P. 2631−2648.
  279. Hakamatsuka T., Hashim M.F., Ebizuka Y., Sankawa U. P-450-dependent oxidative rearrangement in isoflavone biosynthesis: reconstitution of P-450 and NADPH: P-450 reductase // Tetrahedron. 1991. — Vol. 47, N 31. — P. 5969−5978.
  280. Dhaubhadel S., McGarvey B.D., Williams R., Gijzen M. Isoflavonoid biosynthesis and accumulation in developing soybean seeds // Plant Mol. Biol. 2003. — Vol. 53, N 6. — P. 733−743.
  281. Hinderer W., Flentje U., Barz W. Microsomal isoflavone 2'- and 3-hydroxylases from chickpea (Cicer arietinum L.) cell suspensions induced for pterocarpan phytoalexin formation // FEBS Lett. 1987. — Vol. 214, N 1. — P. 101−106.
  282. Colliver S.P., Morris P., Robbins M.P. Differential modification of flavonoid and isoflavonoid biosynthesis with an antisense chalcone synthase construct in transgenic Lotus corniculatus// Plant Mol. Biol. 1997. — Vol. 35, N 4. — P. 509−522.
  283. Lopez-Meyer M., Paiva N.L. Immunolocalization of vestitone reductase and isoflavone reductase, two enzymes involved in the biosynthesis of the phytoalexin medicarpin // Physiol. Mol. Plant Pathol. 2002. — Vol. 61, N 1. — P. 15−30.
  284. Tiemann K., Hinderer W., Barz W. Isolation of NADPH: isoflavone oxidoreductase, a new enzyme of Pterocarpan phytoalexin biosynthesis in cell suspension cultures of Cicer arietinum // FEBS Lett. 1987. — Vol. 213, N 2. — P. 324−328.
  285. Landini S., Graham M.Y., Graham T.L. Lactofen induces isoflavone accumulation and glyceollin elicitation competency in soybean // Phytochemistry. 2003. — Vol. 62, N 6. — P. 865−874.
  286. Yu O., Shi J., Hession A.O., Maxwell C.A., McGonigle B., Odell J.T. Metabolic engineering to increase isoflavone biosynthesis in soybean seed // Phytochemistry. 2003. — Vol. 63, N 7. — P. 753−763.
  287. Kim B.G., Kim S.-Y., Song H.S., Lee C., Hur H.-G., Kim S.-l., Ahn J.-H. Cloning and expression of the isoflavone synthase gene (IFS-Tp) from Trifolium pratense II Mol. Cells. 2003. — Vol. 15, N 3. — P. 301−306.
  288. Aronson W.J., Tymchuk C.N., Elashoff R.M., McBride W.H., McLean C., Wang H., Heber D. Decreased growth of human prostate LNCaP tumors in SCID mice fed a low-fat, soy protein diet with isoflavones // Nutr. Cancer. 1999. — Vol. 35, N 2. -P. 130−136.
  289. Sartippour M.R., Rao J.Y., Apple S., Wu D., Henning S" Wang H., Elashoff R., Rubio R., Heber D., Brooks M.N. A pilot clinical study of short-term isoflavone supplements in breast cancer patients // Nutr. Cancer. 2004. — Vol. 49, N 1. — P. 59−65.
  290. Hintz K.K., Ren J. Phytoestrogenic isoflavones daidzein and genistein reduce glucose-toxicity-induced cardiac contractile dysfunction in ventricular myocytes // Endocr. Res. 2004. — Vol. 30, N 2. — P. 215−223.
  291. Sarkar F.H., Li Y. Soy isoflavones and cancer prevention // Cancer Invest. -2003. Vol. 21, N 5. — P. 744−757.
  292. Adlercreutz H., Heinonen S.M., Penalvo-Garcia J. Phytoestrogens, cancer and coronary heart disease // BioFactors. 2004. — Vol. 22, N 1−4. — P. 229−236.
  293. Cornwell T., Cohick W., Raskin I. Dietary phytoestrogens and health // Phytochemistry. 2004. — Vol. 65, N 8. — P. 995−1016.
  294. Reinwald S., Weaver C.M. Soy isoflavones and bone health: a double-edged sword? // J. Nat. Prod. 2006. — Vol. 69, N 3. — P. 450−459.
  295. Tikkanen M.J., Adlercreutz H. Dietary soy-derived isoflavone phytoestrogens. Could they have a role in coronary hert dizeaze prevention? // Biochem. Pharmacol. 2000. — Vol. 60, N 1. — P. 1−5.
  296. McCue P., Shetty K. Health benefits of soy isoflavonoids and strategies for enhancement: a review // Crit. Rev. Food Sci. Nutr. 2004. — Vol. 44, N 5. — P. 361 367.
  297. Guan L., Yeung S.Y.V., Huang Y., Chen Z.-Y. Both soybean and kudzu phytoestrogens modify favorably the blood lipoprotein profile in ovariectomized and castrated hamsters // J. Agric. Food Chem. -2006. Vol. 54, N 13. — P. 4907−4912.
  298. Kondo K., Suzuki Y., Ikeda Y., Umemura K. Genistein, an isoflavone included in soy, inhibits thrombotic vessel occlusion in the mouse femoral artery and in vitro platelet aggregation // Eur. J. Pharmacol. -2002. Vol. 455, N 1. — P. 53−57.
  299. Akiyama T., Ogawara H. Use and specificity of genistein as inhibitor of protein-tyrosine kinases // Methods Enzymol. 1991. — Vol. 201. — P. 362−370.
  300. Zielonka J., Gebicki J., Grynkiewicz G. Radical scavenging properties of genistein // Free Radic. Biol. Med. 2003. — Vol. 35, N 8. — P. 958−965.
  301. Ferretti G., Bacchetti T., Menanno F., Curatola G. Effect of genistein against copper-induced lipid peroxidation of human high density lipoproteins (HDL) // Atherosclerosis. 2004. — Vol. 172, N 1. — P. 55−61.
  302. Mizunuma H., Kanazawa K., Ogura S., Otsuka S., Nagai H. Anticarcinogenic effects of isoflavones may be mediated by genistein in mouse mammary tumor virus-induced breast cancer // Oncology. 2002. — Vol. 62, N 1. — P. 78−84.
  303. Dalu A., Blaydes B.S., Bryant C.W., Latendresse J.R., Weis C.C., Delclos K.B. Estrogen receptor expression in the prostate of rats treated with dietary genistein // J. Chromatogr. B. 2002. — Vol. 777, N 1−2. — P. 249−260.
  304. Sarkar F.H., Li Y. Mechanisms of cancer chemoprevention by soy isoflavone genistein // Cancer Metastasis Rev. 2002. — Vol. 21, N 3−4. — P. 265−280.
  305. Gao S., Liu G.Z., Wang Z. Modulation androgen receptor-dependent transcription by rezveratrol and genistein in prostate cancer cell // Prostate. 2004. — Vol. 59, N 2. — P. 214−225.
  306. Tominaga Y., Wang A., Wang R.H., Wang X., Cao L., Deng C.X. Genistein inhibits Brcal mutant tumor growth through activation of DNA damage checkpoints, cell cycle arrest, and mitotic catastrophe // Cell Death Differ. 2007. — Vol. 14, N 3.- P. 472—479.
  307. Chen W.F., Huang M.H., Tzang C.H., Yang M., Wong M.S. Inhibitory actions of genistein in human breast cancer (MCF-7) cells // Biochim. Biophys. Acta. 2003. -Vol. 1638, N 2.-P. 187−196.
  308. Falcao M.J.C., Pouliquem Y.B.M., Lima M.A.S., Gramosa N.V., Costa-Lotufo L.V., Militao G.C.G., Pessoa C., de Moraes M.O., Silveira E.R. Cytotoxic flavonoids from Platymiscium floribundum II J. Nat. Prod. 2005. — Vol. 68, N 3. — P. 423−426.
  309. Sugimoto E., Yamaguchi M. Stimulatory effect of daidzein in osteoblastic MC3T3-E1 cells // Biochem. Pharmacol. 2000. — Vol. 59, N 5. — P. 471−475.
  310. Migliaccio S., Anderson J.J.B. Isoflavones and skeletal health: are these molecules ready for clinical application? // Osteoporosis Int. 2003. — Vol. 14, N 5. -P. 361−368.
  311. Rice-Evans C. Flavonoid antioxidants // Curr. Med. Chem. 2001. — Vol. 8, N 7.- P. 797−807.
  312. Lee J.H., Lee B.W., Kim J.H., Jeong T.-S., Kim M.J., Lee W.S., Park K.H. LDL-antioxidant pterocarpans from roots of Glycine max (L.) Merr. // J. Agric. Food Chem. 2006. — Vol. 54, N 6. — P. 2057−2063.
  313. Rufer C.E., Kulling S.E. Antioxidant activity of isoflavones and their major metabolites using different in vitro assays // J. Agrie. Food Chem. 2006. — Vol. 54, N8.-P. 2926−2931.
  314. Verdrengh M., Jonsson I.M., Holmdahl R., Tarkowski A. Genistein as an antiinflammatory agent // Inflam. Res. 2003. — Vol. 52, N 8. — P. 341−346.
  315. Keung W.M., Vallee B.L. Daidzin and daidzein suppress free-choice ethanol intake by Syrian golden hamsters // Proc. Natl. Acad. Sci. U.S. A. 1993. — Vol. 90, N21.-P. 10 008−10 012.
  316. Shimada N., Akashi T., Aoki T., Ayabe S. Induction of isoflavonoid pathway in the model legume Lotus japonicus: molecular characterization of enzymes involved in phytoalexin biosynthesis // Plant Sci. -2000. Vol. 160, N 1. — P. 37-^7.
  317. Aoki T., Akashi T., Ayabe S. Flavonoids of Leguminous plants: structure, biological activity, and biosynthesis // J. Plant Res. 2000. — Vol. 113, N 4. — P. 475—488.
  318. Durango D., Quinones W., Torres F., Rosero Y., Gil J., Echeverri F. Phytoalexin accumulation in Colombian bean varieties and aminosugars as elicitors // Molecules. -2002.-Vol. 7, N 11.-P. 817−832.
  319. Wu Q., Preisig C.L., VanEtten H.D. Isolation of the cDNAs encoding (+)6a-hydroxymaackiain 3-O-methyltransferase, the terminal step for the synthesis of the phytoalexin pisatin in Pisum satvium II Plant Mol. Biol. 1997. — Vol. 35, N 5. — P. 551−560.
  320. Li W., Koike K., Asada Y., Hirotani M., Rui H., Yoshikawa T., Nikaido T. Flavonoids from Glycyrrhiza pallidiflora hairy root cultures // Phytochemistry. 2002. -Vol. 60, N4.-P. 351−355.
  321. Kessmann H., Barz W. Accumulation of isoflavones and pterocarpan phytoalexins in cell suspension cultures of different cultivars of chickpea (Cicer arietinum) II Plant Cell Reports. 1987. — Vol. 6, N 1. — P. 55−59.
  322. Weidemann С., Tenhaken R., Hohl U., Barz W. Medicarpin and maackiain 3−0• glucoside-6-O-malonate conjugates are constitutive compounds in chickpea (C/'cerarietinum L.) cell cultures // Plant Cell Reports. 1991. — Vol. 10, N 6−7. — P. 371 374.
  323. Boltenkov E.V., Rybin V.G., Zarembo E.V. Flavones from callus tissue of Iris ensata II Chem. Nat. Compd. 2005. — Vol. 41, N 5. — P. 539−541.
  324. Li W., Asada Y., Yoshikawa T. Flavonoid constituents from Glycyrrhiza glabra hairy root cultures // Phytochemistry. 2000. — Vol. 55, N 5. — P. 447−456.
  325. Li W., Asada Y., Koike K., Hirotani M., Rui H., Yoshikawa Т., Nikaido T. Flavonoids from Glycyrrhiza pallidiflora hairy root cultures // Phytochemistry. 2001. -Vol. 58, N4.-P. 595−598.
  326. Park H.-H., Hakamatsuka Т., Sankava U., Ebizuka Y. Effects of various elisitors on the accumulations and secretion of isoflavonoids in the Whit Lupin // Phytochemistry. 1997. — Vol. 44, N 8. — P. 1463−1467.
  327. Park H.H., Hakamatsuka Т., Sankawa U., Ebizuka Y. Rapid metabolism of isoflavonoids in elicitor-treated cell suspension cultures of Pueraria lobata II Phytochemistry. 1995. — Vol. 38, N 2. — P. 373−380.
  328. Luczkiewicz M., Gtod D. Callus cultures of genista plants in vitro material producing high amounts of isoflavones of phytoestrogen^ activity // Plant Sci. -2003. — Vol. 165, N 5. — P. 1101−1108.
  329. О.Б., Кулеш Н. И., Горовой П. Г. Биологически активные вещества Maackia amurensis Rupr. et Maxim, и перспективы использования этого вида в медицине // Раст. ресурсы. 1992. — Т. 28, вып. 3. — С. 157−163.
  330. Molchanova A.I., Sokolova L.I., Gorovoi P.G. Quinolizidine alkaloids from Maackia amurensis runners // Chem. Nat. Compd. 2006. — Vol. 42, N 6. — P. 745 746.
  331. Van Damme E.J.M., Van Leuven F., Peumans W.J. Isolation, characterization and molecular cloning of the bark lectins from Maackia amurensis II Glycoconjugate. J. 1997. — Vol. 14, N 4. — P. 449−456.
  332. Takai M., Yamaguchi H., Saitoh Т., Shibata S. Chemical studies on the oriental plant drugs. XXXV. The chemical constituents of the heartwood of Maackia amurensis var. buergeri II Chem. Pharm. Bull. 1972. — Vol. 20, N 11. — P. 24 882 490.
  333. О.Б., Кулеш Н. И., Степаненко Л. С. Маакия амурская. Экстрактивные вещества древесины и их биологическая активность // Химия в интересах устойчивого развития. 1998. — Т. 6. — С. 447−460.
  334. О.Б., Кривощекова О. Е., Степаненко Л. С., Богуславская Л. В. Изофлавоны и стильбены ядровой древесины Maackia amurensis II Химия природ, соединений. 1985. — № 6. — С. 775−781.
  335. О.Е., Степаненко Л. С., Максимов О. Б. Новый изофлавоно-стильбен из ядровой древесины Maackia amurensis II Химия природ, соединений. 1986. — № 1. — С. 39−42.
  336. А.И., Ковалев В. Н., Комиссаренко Н. Ф. Изофлавоноиды коры и листьев Maackia amurensis И Химия природ, соединений. 1994. — № 3. — С. 288−290.
  337. Kulesh N.I., Denisenko V.A., Maksimov О.В. Stilbenolignan from Maackia amurensis II Phytochemistry. 1995. — Vol. 40, N 3. — P. 1001−1003.
  338. Kulesh N.I., Maksimov O.B., Denisenko V.A., Glazunov V.P. Isoflavonoids from heartwood of Maackia amurensis Rupr. et Maxim. // Chem. Nat. Compd. 2001. -Vol. 37, N 1.-P. 29−31.
  339. Matsuura N., Nakai R., linuma M., Tanaka Т., Inoue K. A prenylated flavanone from roots of Maackia amurensis subsp. Buergeri // Phytochemistry 1994. — Vol. 36, N 1.-P. 255−256.
  340. Kulesh N.I., Denisenko V.A. Polyphenols from Maackia amurensis root bark // Chem. Nat. Compd. 2003. — Vol. 39, N 6. — P. 599−600.
  341. Li X., Wang D., Xia M.-y., Wang Z.-h" Wang W.-n" Cui Z. Cytotoxic prenylated flavonoids from the stem bark of Maackia amurensis II Chem. Pharm. Bull. 2009. -Vol. 57, N 3. — P. 302−306.
  342. T.B., Глебко Л. И., Степаненко Л. С., Кулеш Н. И., Горовой П. Г. Содержание экстрактивных веществ и мономерных фенольных компонентов в ядровой древесине Maackia amurensis Rupr. et Maxim. // Раст. ресурсы. 1990. -Т. 26, вып. 4. — С. 555−558.
  343. Т.В., Глебко Л. И., Максимов О. Б. Определение фенольных компонентов в спиртовых экстрактах из древесины Maackia amurensis // Химия природ, соединений. 1988. — № 6. — С. 801−804.
  344. Т.В., Кулеш Н. И., Глебко Л. И. Метод количественного определения изофлавонов и полигидроксистильбенов Maackia amurensis // Химия природ, соединений. 1992. — № 5. — С. 440−441.
  345. А.И. Эффективность и механизм действия гепатопротекторов при экспериментальном токсическом поражении печени : дис.. д-ра мед. наук /Сиб. гос. мед. ун-т. Томск, 1991. -310 с.
  346. Ю.А., Арчаков А. И. Перекисное окисление липидов в биологических мембранах. М.: Наука, 1972. — 252 с.
  347. В.Е., Климкина Е. А. Фармакология гепатопротекторов // Обзоры по клин, фармакологии и лекарств, терапии. 2005. — Т. 4, № 1. — С. 2−20.
  348. Kren V., Walterova D. Silybin and silymarin new effects and applications // Biomed. Pap. — 2005. — Vol. 149, N 1. — P. 29−41.
  349. Pradhan S.C., Girish C. Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine // Indian J. Med. Res. 2006. — Vol. 124, N 11.-P. 491−504.
  350. А.И., Саратиков A.C. Механизм действия гепатопротекторов при токсических поражениях печени // Фармакология и токсикология. 1988. -Т. 51, № 1.-С. 89−93.
  351. B.C. Фармакологические и технологические аспекты разработки новых гепатопротективных препаратов природного происхождения : автореф. дис.. д-ра фарм. наук. Томск, 2003. — 43 с.
  352. Р.Д., Борисова И. Г. Проблемы фармакологии антиоксидантов // Фармакология и токсикология. 1992. — Т. 53, № 6. — С. 3−10.
  353. А.И., Саратиков А. С., Чучалин B.C., Паульс О. В. Влияние гепатопротекторов на метаболизм липидов при ССЦ-гепатите // Бюл. эксперим. биологии и медицины. 1987. — № 4. — С. 430−432.
  354. А.С., Венгеровский А. И. Новые гепатопротекторы природного происхождения // Эксперим. клин, фармакология. 1995. — Т. 58, № 1. — С. 811.
  355. Schandalik R., Perucca Е. Pharmacokinetics of silybin following oral administration of silipide in patients with extrahepatic biliary obstruction // Drugs Exp. Clin. Res. 1994. — Vol. 20, № 1. — P. 37−42.
  356. А.И., Седых И.M., Власова Т. В., Саратиков A.C. Гепатозащитные свойства полифенолов Maackia amurensis Rupr. et Maxim, при экспериментальной токсической патологии печени // Раст. ресурсы. 1993. — Т. 29, вып. 3. — С. 95−99.
  357. А.И., Седых И. М., Саратиков A.C. Влияние полифенолов маакии амурской на антитоксическую функцию печени // Эксперим. клин, фармакология. 1993. — Т. 56, № 5. — С. 47−49.
  358. A.C., Венгеровский А. И., Батурина Н. О., Чучалин B.C. Эффективность гепатозащитных средств при экспериментальном хроническом гепатите // Эксперим. клин, фармакология. 1995. — Т. 59, № 1. — С. 24−26.
  359. Т.В., Венгеровский А. И., Саратиков A.C. Полифенолы маакии амурской эффективное гепатозащитное средство // Хим.-фарм. журн. — 1994. — № 3. — С. 56−59.
  360. А.И., Батурина Н. О., Чучалин B.C., Саратиков A.C. Влияние гепатопротекторов, содержащих полифенолы, на течение экспериментального хронического гепатита //Хим.-фарм. журн. 1995. — № 2. — С. 3−4.
  361. A.C., Венгеровский А. И., Мозжелин М. Е., Суходоло И. В. Защитное действие максара при экспериментальном остром панкреатите // Хим.-фарм. журн. 2001. — Т. 35, № 12. — С. 6−7.
  362. A.C., Лившиц Н. С., Бурченкова Ф. И., Кадычагова Н. Г., Ахмеджанов P.P., Баширова Л. В. Доклиническое изучение безопасности максара // Эксперим. клин, фармакология. 2003. — Т. 66, № 6. — С. 53−55.
  363. P.O., Белобородова Э. И. Влияние гепатопротектора максара на функциональное состояние печени при хроническом гепатите // Сиб. журн. гастроэнтерологии и гепатологии. 1997. — № 6−7. — С. 114.
  364. P.O., Белобородова Э. И., Шлисман М. Н., Каблукова И. Б. Влияние гепатопротектора максара на свертывающую систему крови у больных хроническим гепатитом и циррозом печени // Сиб. журн. гастроэнтерологии и гепатологии. 1998. — № 7. — С. 314.
  365. P.O. Влияние гепатопротектора максара на морфофункциональное состояние печени у больных хроническим гепатитом : автореф. дис.. канд. мед. наук. Томск, 2000. — 30 с.
  366. Пат. 2 175 237 Российская Федерация, МПК 7 А 61К 35/78, А 61 Р 1/16. Способ лечения хронических гепатитов / Гайсаев P.O., Белобородова Э. И.,
  367. Саратиков А. С- заявл. 02.06.1998- опубл. 27.10.2001, Бюл. №. 30. -10 с. (Патент передан в 2002 г. ТИБОХ ДВО РАН).
  368. Э.И., Шаловай А. А., Гайсаев P.O. Эффективность максара в лечении хронического гепатита // Эффективность растительных гепатопротекторов при хронических гепатитах. Томск: Изд-во НТЛ. — 2003. -С. 63−115.
  369. Shen Т., Wang X.-N., Lou Н.-Х. Natural stilbenes: an overview // Nat. Prod. Rep. -2009.-Vol. 26, N 7.-P. 916−935.
  370. Eckermann C., Schroder G., Eckermann S., Strack D., Schmidt J., Schneider В., Schroder J. Stilbenecarboxylate biosynthesis: a new function in the family of chalcone synthase-related proteins // Phytochemistry. 2003. — Vol. 62, N 3. — P. 271−286.
  371. Liu S., Hu Y., Wang X., Zhong J., Lin Z. High content of resveratrol in lettuce transformed with a stilbene synthase gene of Parthenocissus henryana // J. Agric. Food Chem. 2006. — Vol. 54, N 21. — P. 8082−8085.
  372. Huang K.S., Lin M. Oligostilbenes from the root of Vitis amurensis II J. Asian Nat. Prod. Res. 1999. — Vol. 2, N 1. — P. 21−28.
  373. Huang K.-S., Lin M., Yu L.-N., Kong M. Four novel oligostilbenes from the roots of Vitis amurensis И Tetrahedron. 2000. — Vol. 56, N 10. — P. 1321−1329.
  374. Huang K.-S., Lin M., Cheng G.-F. Anti-inflammatory tetramers of resveratrol from the roots of Vitis amurensis and the conformations of the seven-membered ring in some oligostilbenes // Phytochemistry. 2001. — Vol. 58, N 2. — P. 357−362.
  375. Li W.-W., Ding L.-S., Li B.-G., Chen Y.-Z. Oligostilbenes from Vitis heyneana II Phytochemistry. 1996. — Vol. 42, N 4. — P. 1163−1165.
  376. Ito J., Takaya Y., Oshima Y., Niwa M. New oligostilbenes having a benzofuran from Vitis vinifera Kyohou' // Tetrahedron. 1999. — Vol. 55, N 9. — P. 2529−2544.
  377. Oshima Y., Kamijou A., Moritani H., Namao K., Ohizumi Y. Vitisin A and cis-vitisin A, strongly hepatotoxic plant oligostilbenes from Vitis coignetiae (Vitaceae) // J. Org. Chem. 1993. — Vol. 58, N 4. — P. 850−853.
  378. Coggon T.P., King J., Wallwork S.C. The structure of hopeaphenol // Chem. Commun. 1966. — N 13. — P. 439-^40.
  379. Coggon P., McPhail A.T., Wallwork S.C. Structure of hopeaphenol: X-Ray analysis of the benzene solvate of dibromodeca-O-methylhopeaphenol // J. Chem. Soc. B. 1970. — P. 884−897.
  380. Ito J., Niwa M., Oshima Y. A new hydroxystilbene tetramer named isohopeaphenol from Vitis vinifera 'Kyohou' // Heterocycles. 1997. — Vol. 45, N 9. -P. 1809−1813.
  381. Zgoda-Pols J.R., Freyer A.J., Killmer L.B., Porter J.R. Antimicrobial resveratrol tetramers from the stem bark of Vatica oblongifolia ssp. oblongifolia II J. Nat. Prod. -2002. Vol. 65, N 11. — P. 1554−1559.
  382. De la Lastra C.A., Villegas I. Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications // Mol. Nutr. Food Res. 2005. — Vol. 49, N 5. — P. 405−430.
  383. Wu S.-N. Large-conductance Ca2±activated K+ channels: physiological role and pharmacology//Curr. Med. Chem. -2003. Vol. 10, N 8. — P. 649−661.
  384. Zhou C.X., Kong L.D., Ye W.C., Cheng C.H.K., Tan R.X. Inhibition of xanthine and monoamine oxidases by stilbenoids from Veratrum taliense II Planta Med. -2001. Vol. 67, N 2. — P. 158−161.
  385. Iliya I., Ali Z., Tanaka T., linuma M., Furusawa M., Nakaya K.-i., Murata J., Darnaedi D., Matsuura N., Ubukata M. Stilbene derivatives from Gnetum gnemon Linn. // Phytochemistry. 2003. — Vol. 62, N 4. — P. 601−606.
  386. Lee J.P., Min B.S., An R.B., Na M.K., Lee S.M., Lee H.K., Kim J.G., Bae K.H., Kang S.S. Stilbenes from the roots of Pleuropterus ciliinervis and their antioxidant activities // Phytochemistry. 2003. — Vol. 64, N 3. — P. 759−763.
  387. Cherubini A., Ruggiero C., Morand C., Lattanzio F., DeN’Aquila G., Zuliani G., lorio A.D., Andres-Lacueva C. Dietary antioxidants as potential pharmacological agents for ischemic stroke // Curr. Med. Chem. 2008. — Vol. 15, N 12. — P. 12 361 248.
  388. Raval A.P., Lin H.W., Dave K.R., DeFazio R.A., Morte D.D., Kim E.J., Perez-Pinzon M.A. Resveratrol and ischemic preconditioning in the brain // Curr. Med. Chem.-2008.-Vol. 15, N 15.-P. 1545−1551.
  389. Adams M., Pacher T., Greger H., Bauer R. Inhibition of leukotriene biosynthesis by stilbenoids from Stemona species // J. Nat. Prod. 2005. — Vol. 68, N 1. — P. 8385.
  390. Szewczuk L.M., Lee S.H., Blair I.A., Penning T.M. Viniferin formation by COX-1: evidence for radical intermediates during co-oxidation of resveratrol // J. Nat. Prod. -2005. Vol. 68, N 1. — P. 36−42.
  391. Szewczuk L.M. Penning T.M. Mechanism-based inactivation of COX-1 by red wine m-hydroquinones: a structure-activity relationship study // J. Nat. Prod. 2004.- Vol. 67, N 11. P. 1777−1782.
  392. Pervaiz S. Resveratrol: from grapevines to mammalian biology // FASEB J. -2003. Vol. 17, N 14. — P. 1975−1985.
  393. Matsuda H., Kageura T., Morikawa T., Toguchida I., Harima S., Yoshikawa M. Effects of stilbene constituents from rhubarb on nitric oxide production in lipopolysaccharide-activated macrophages // Bioorg. Med. Chem. Lett. 2000. -Vol. 10, N4.-P. 323−327.
  394. Renaud S., De Lorgeril M. Wine, alcohol, platelets and the French paradox for coronary heart disease // Lancet. 1992. — Vol. 339, N 8808. — P. 1523−1526.
  395. Delmas D., Jannin B., Latruffe N. Resveratrol: preventing properties against vascular alterations and ageing // Mol. Nutr. Food Res. 2005. — Vol. 49, N 5. — P. 377−395.
  396. Somoza V. MAGIC-OL resveratrol // Mol. Nutr. Food Res. 2005. — Vol. 49, N 5.- P. 373.
  397. Bradamante S., Barenghi L., Villa A. Cardiovascular protective effects of resveratrol // Cardiovasc. Drug Rev. 2004. — Vol. 22, N 3. — P. 169−188.
  398. Kim S., Min S.Y., Lee S.K., Cho W.-J. Comparative molecular field analysis study of stilbene derivatives active against A549 lung carcinoma // Chem. Pharm. Bull. -2003.-Vol. 51, N 5.-P. 516−521.
  399. Pettit G.R., Minardi M.D., Rosenberg H.J., Hamel E., Bibby M.C., Martin S.W., Jung M.K., Pettit R.K., Cuthbertson T.J., Chapuis J.-C. Antineoplastic agents. 509.
  400. Synthesis of fluorcombstatin phosphate and related 3-halostilbenes // J. Nat. Prod. -2005. Vol. 68, N 10. — P. 1450−1458.
  401. Gill C., Walsh S.E., Morrissey C., Fitzpatrick J.M., Watson R.W. Resveratrol sensitizes androgen independent prostate cancercells to death-receptor mediated apoptosis through multiple mechanisms // Prostate. 2007. — Vol. 67, N 15. — P. 1641−1653.
  402. Ulrich S., Wolter F., Stein J.M. Molecular mechanisms of the chemopreventive effects of resveratrol and its analogs in carcinogenesis // Mol. Nutr. Food Res. -2005. Vol. 49, N 5. — P. 452−461.
  403. Su J.-L., Yang C.-Y., Zhao M., Kuo M.-L., Yen M.-L. Forkhead proteins are critical for bone morphogenetic protein-2 regulation and anti-tumor activity of resveratrol // J. Biol. Chem. 2007. — Vol. 282, N 27. — P. 19 385−19 398.
  404. Gehm B.D., McAndews J.M., Chien P.-Y., Jameson J.L. Resveratrol, a polyphenols compound found in grapes and wine, is an agonist for the estrogen receptor// Proc. Natl. Acad. Sci. U.S.A. 1997. — Vol. 94, N 25. — P. 14 138−14 143.
  405. Wang L.-X., Heredia A., Song H., Zhang Z., Yu В., Davis C., Redefield R. Resveratrol glucuronides as the metabolites of resveratrol in humans: characterization, synthesis, and anti-HIV activity // J. Pharm. Sci. 2004. — Vol. 93, N 10.-P. 2448−2457.
  406. Masoro E.J. Caloric restriction and aging: an update // Exp. Gerontol. 2000. -Vol. 35, N 3. — P. 299−305.
  407. Bauer J.H., Goupil S., Garber G.B., Helfand S.L. An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster II Proc. Natl. Acad. Sci. U.S.A.-2004.-Vol. 101, N35.-P. 12 980−12 985.
  408. Orallo F. Trans-resveratrol: a magical elixir of eternal youth? // Curr. Med. Chem. 2008. — Vol. 15, N 19. — P. 1887−1898.
  409. Ohyama M., Tanaka Т., Ito Т., linuma M., Bastow K.F., Lee K.-H. Antitumor agents 200. Cytotoxicity of naturally occurring resveratrol oligomers and their acetate derivatives // Bioorg. Med. Chem. Lett. 1999. — Vol. 9, N 20. — P. 30 573 060.
  410. Yamada M., Hayashi K.-i., Hayashi H., Ikeda S., Hoshino Т., Tsutsui K., Tsutsui K., linuma M., Nozaki H. Stilbenoids of Kobresia nepalensis (Cyperaceae) exhibiting DNA topoisomerase II inhibition // Phytochemistry. 2006. — Vol. 67, N 3. — P. 307 313.
  411. Н.Ф., Фоменко C.E., Положенцева М. И., Буланов А. Е. Влияние природных комплексов биологически активных веществ на процессы восстановления функций печени при алкогольной интоксикации // Вопр. мед. химии. 1995. — Т. 41, № 2. — С. 20−23.
  412. В.Г., Кушнерова Н. Ф., Гордейчук Т. Н., Фоменко С. Е. Стресс-протективное действие диприма // Эксперим. и клин, фармакология. 2002. -Т. 65, № 4. — С. 56−58.
  413. Yang Н., Sung S.H., Kim Y.C. Two new hepatoprotective stilbene glycosides from Acer mono leaves//J. Nat. Prod. 2005. — Vol. 68, N 1.-P. 101−103.
  414. Rivera H., Shibayama M., Tsutsumi V., Perez-Alvarez V., Muriel P. Resveratrol and trimethylated resveratrol protect from acute liver damage induced by ССЦ in the rat// J. Appl. Toxicol. 2008. — Vol. 28, N 2. — P. 147−155.
  415. Burns J., Yokota Т., Ashihara H., Lean M.E.J., Crozier A. Plant foods and herbal sources of resveratrol // J. Agric. Food Chem. 2002. — Vol. 50, N 11. — P. 33 373 340.
  416. Babu S.K., Kumar K.V., Subbaraju G.V. Estimation of trans-resveratrol in herbal extracts and dosage forms by high-performance thin-layer chromatography // Chem. Pharm. Bull. 2005. — Vol. 53, N 6. — P. 691−693.
  417. Teguo P.W., Decendit A., Krisa S., Deffieux G., Vercauteren J., Merillon J.M. The accumulation of stilbene glycosides in Vitis vinifera cell suspension cultures // J. Nat. Prod.-1996.-Vol. 59, N 12.-P. 1189−1191.
  418. Krisa S., Larronde F., Budzinski H., Decendit A., Deffieux G., Merillon J.-M. Stilbene production by Vitis vinifera cell suspension cultures: methyl jasmonate induction and 13C biolabeling // J. Nat. Prod. 1999. — Vol. 62, N 12. — P. 16 881 690.
  419. Krasnow M.N., Murphy T.M. Polyphenol glucosylating activity in cell suspensions of grape (Vitis vinifera) II J. Agric. Food Chem. 2004. — Vol. 52, N 11. — P. 34 673 472.
  420. Ku K.-L., Chang P.-S., Cheng Y.-C., Lien C.-Y. Production of stilbenoids from the callus of Arachis hypogaea: a novel source of the anticancer compound piceatannol //J. Agric. Food Chem. -2005. Vol. 53, N 10. — P. 3877−3881.
  421. Jo J.-Y., de Mejia E.G., Lila M.A. Effects of grape cell culture extracts on human topoisomerase II catalytic activity and characterization of active fractions // J. Agric. Food Chem. -2005. Vol. 53, N 7. — P. 2489−2498.
  422. Snyder S.A., Zografos A.L., Lin Y. Total synthesis of resveratrol-based natural products: a chemoselective solution // Angew. Chem. 2007. — Vol. 46, N 43. — P. 8186−8191.
  423. Van Rozendaal E.L.M., Kurstjens S.J.L., van Веек T.A., van der Berg R.G. Chemotaxonomy of Taxus // Phytochemistry. 1999. — Vol. 52, N 3. — P. 427−433.
  424. Parmar V.S., Jha A., Bisht K.S., Taneja P., Singh S.K., Kumar A., Poonam, Jain R., Olsen C.E. Constituents of the yew trees // Phytochemistry. 1999. — Vol. 50, N8.-P. 1267−1304.
  425. Yang S.J., Fang J.M., Cheng Y.S. Lignans, flavonoids and phenolic derivatives from Taxus maireiII J. Chin. Chem. Soc. 1999. — Vol. 46, N 5. — P. 811−820.
  426. Wani M.C., Taylor H.L., Wall M.E., Coggon P., McPhail A.T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia II J. Amer. Chem. Soc. 1971. — Vol. 93, N 9. — P. 2325−2327.
  427. Kingston D.G.I., Molinero A.A., Rimoldi J.M. The taxane diterpenoids // Progress in the chemistry of organic natural products / Eds. W. Herz, G.W. Kirby, R.E. Moore, W. Steglich, C. Tamm. Vieenna — New York: Springer, 1993. — Vol. 61. — P. 1206.
  428. Begley M.J., Jackson C.B., Pattenden G. Total synthesis of verticillene. A biomimetic approach to the taxane family of alkaloids // Tetrahedron. 1990. — Vol. 46, N 13−14.-P. 4907−4924.
  429. Miller R.W., Powell R.G., Smith C.R., Arnold E., Clardy J. Antileukemic alkaloids from Taxus wallichiana Zucc. // J. Org. Chem. 1981. — Vol. 46, N 7. — P. 14 691 474.
  430. Nicolaou K.C., Yang Z., Liu J.J., Ueno H., Nantermet P.G., Guy R.K., Claiborne C.F., Renaud J., Couladouros E.A., Paulvannan K., Sorensen E.J. Total synthesis of taxol // Nature. 1994. — Vol. 367, N 6464. — P. 630−634.
  431. O.H., Нуриева E.B., Рыжов A.H., Зык Н.В., Зефиров Н. С. Таксол: синтез, биоактивные конформации и соотношение структура-активность для его аналогов // Журн. орган, химии. 2005. — Т. 41, вып. 3. — С. 329−361.
  432. Ellis D.D., Zeldin E.L., Brodhagen М., Russin W.A., McCown B.H. Taxol production in nodule cultures of Taxus И J. Nat. Prod. 1996. — Vol. 59, N 3. — P. 246−250.
  433. Ma W., Stahlhut R.W., Adams T.L., Park G.L., Evans W.A., Blumenthal S.G., Gomez G.A., Nieder M.H., Hylands P.J. Yunnanxane and its homologous esters from cell cultures of Taxus chinensis var. mairei II J. Nat. Prod. 1994. — Vol. 57, N9.-P. 1320−1324.
  434. Cheng K., Fang W" Yang Y., Xu H" Meng C., Kong M" He W" Fang Q. C-14 oxygenated taxanes from Taxus yunnanensis cell cultures // Phytochemistry. -1996. Vol. 42, N 1. — P. 73−75.
  435. Bai J., Ito N., Sakai J., Kitabatake M., Fujisawa H., Bai L., Dai J., Zhang S., Hirose K., Tomida A., Tsuruo T., Ando M. Taxoids and abietanes from callus cultures of Taxus cuspidata II J. Nat. Prod. 2005. — Vol. 68, N 4. — P. 497−501.
  436. Baebler S., Camloh M., Kovac M., Ravnikar M., Zel J. Jasmonic acid stimulates taxane production in cell suspension culture of yew (Taxus * media) II Planta Med. -2002. Vol. 68, N 5. — P. 475176.
  437. Lan W.Z., Yu L.J., Li M.Y., Qin W.M. Cell death unlikely contributes to taxol production in fungal elicitor-induced cell suspension cultures of Taxus chinensis II Biotechnol. Lett. -2003. Vol. 25, N 1. — P. 47−49.
  438. Baloglu E., Kingston D.G.I. A new semisynthesis of paclitaxel from baccatin III // J. Nat. Prod.-1999.-Vol. 62, N7.-P. 1068−1071.
  439. Appendino G. The phytochemistry of yew tree // Nat. Prod. Rep. 1995. — Vol. 12, N 4. — P. 349−360.
  440. Baloglu E., Kingston D.G.I. The taxane diterpenoids // J. Nat. Prod. 1999. -Vol. 62, N 10.-P. 1448−1472.
  441. Shigemori H., Kobayashi J. Biological activity and chemistry of taxoids from the Japanese yew, Taxus cuspidata II J. Nat. Prod. 2004. — Vol. 67, N 2. — P. 245 256.
  442. Banskota A.H., Usia T., Tezuka Y., Kouda K., Nguyen N.T., Kadota S. Three new C-14 oxygenated taxanes from the wood of Taxus yunnanensis II J. Nat. Prod. -2002. Vol. 65, N 11. — P. 1700−1702.
  443. Yang S.-J., Fang J.-M., Cheng Y.-S. Taxanes from Taxus mairei H Phytochemistry. 1996. — Vol. 43, N 4. — P. 839−842.
  444. Lavelle F., GueritteVoegelein F., Guenard D. Taxotere from yew’s needles to patients // Bull. Cancer. — 1993. — Vol. 80, N 4. — P. 326−338.
  445. Kuo Y.-H., Li S.-Y., Wu M.-D., Huang R.-L., Yang Kuo L.-M., Chen C.-F. A new anti-HBeAg lignan, kadsumarin A, from Kadsura matsudai and Schizandra arisanensis II Chem. Pharm. Bull. 1999. — Vol. 47, N 7. — P. 1047−1048.
  446. Lu Y., Foo L.Y. Polyphenols of Salvia a review // Phytochemistry. — 2002. -Vol. 59, N2.-P. 117−140.
  447. Lewis, N.G., Davin, L.B. Evolution of lignan and neolignan biochemical pathways // Isopentenoids and other natural products: evolution and function. Symp. Ser. 562. / Eds: W.D. Nes. Washington, DC: Amer. Chem. Soc., 1994. — P. 202−246.
  448. Miller R.W., McLaughlin J. L, Powell R.G., Plattner R.D., Weisleder D., Smith C.R. Lignans from Taxus wallichiana II J. Nat. Prod. 1982. — Vol. 45, N 1. — P. 7882.
  449. Martinez V.J.C., Aldana J.M.I., Cuca S.L.E. Dibenzylbutane lignans from Virola sebifera leaves // Phytochemistry. 1999. — Vol. 50, N 5. — P. 883−886.
  450. Das B., Rao S.P., Srinivas K.V.N.S., Yadav J.S. Lignans of Taxus baccata II Fitoterapia. 1995. — Vol. 66, N 5. — P. 475.
  451. Barrero A.F., Herrador M.M., Akssira M., Arteaga P., Romera J.L. Lignans and polyacetylenes from Bupleurum acutifolium // J. Nat. Prod. 1999. — Vol. 62, N 7. -P. 946−948.
  452. Shen Y.-C., Chen C.-Y., Lin Y.-M., Kuo Y.-H. A lignan from roots of Taxus mairei II Phytochemistry. 1997. — Vol. 46, N 6. — P. 1111−1113.
  453. Filho A.A.S., Albuquerque S., Silva M.L.A., Eberlin M.N., Tomazela D.M., Bastos J.K. Tetrahydrofuran lignans from Nectandra megapotamica with trypanocidal activity // J. Nat. Prod. 2004. — Vol. 67, N 1. — P. 42−45.
  454. Innocenti G., Puricelli L., Piacente S., Caniato R., Filippini R., Cappelletti E.M. Patavine, a new arylnaphthalene lignan glycoside from shoot cultures of Haplophyllum patavinum II Chem. Pharm. Bull. 2002. — Vol. 50, N 6. — P. 844−846.
  455. Al-Abed Y" Abu-Zarga M., Sabri S., Atta-Ur-Rahman, Voelter W. A arylnaphthalene lignan from Haplophyllum buxbaumii 1/ Phytochemistry. 1998. -Vol. 49, N 6. — P. 1779−1781.
  456. Lee S.-S., Lin M.-T., Liu C.-L., Lin Y.-Y., Liu K.C.S.C. Six lignans from Phyllanthus myrtifolius II J. Nat. Prod. 1996. — Vol. 59, N 11. — P. 1061−1065.
  457. Kuo Y.-H., Li S.-Y., Huang R.-L., Wu M.-D., Huang H.-C., Lee K.-H. Schizarin B, C, D, and E, four new lignans from Kadsura matsudai and their antihepatitis activities // J. Nat. Prod. 2001. — Vol. 64, N 4. — P. 48790.
  458. Chen D.-F., Zhang S.-X., Chen K., Zhou B.-N., Wang P., Cosentino L.M., Lee K.-H. Two new lignans, interiotherins A and B, as anti-HIV principles from Kadsura interiorII J. Nat. Prod. 1996. — Vol. 59, N 11. — P. 1066−1068.
  459. Kuroyanagi M., Yoshida K., Yamamoto A., Miwa M. Bicyclo3.2.1.octane and 6-oxabicyclo[3.2.2]nonane type neolignans from Magnolia denudata II Chem. Pharm. Bull. 2000. — Vol. 48, N 6. — P. 832−837.
  460. Rossi M.H., Yoshida M., Maia J.G.S. Neolignans, styrylpyrones and flavonoids from an Aniba species // Phytochemistry. 1997. — Vol. 45, N 6. — P. 1263−1269.
  461. Zhang H.-J., Tamez P.A., Hoang V.D., Tan G.T., Hung N.V., Xuan L.T., Huong L.M., Cuong N.M., Thao D.T., Soejarto D.D., Fong H.H.S., Pezzuto J.M. Antimalarial compounds from Rhaphidophora decursiva II J. Nat. Prod. 2001. — Vol. 64, N 6. -P. 772−777.
  462. Moss G.P. Nomenclature of lignans and neolignans // Pure Appl. Chem. 2000. -Vol. 72, N 8. — P. 1493−1523.
  463. Erdtman H., Tsuno K. Taxus heartwood constituents // Phytochemistry. 1969. -Vol. 8, N 5. — P. 931−932.
  464. Mujumdar R.B., Srinivasan R., Venkataraman K. Taxiresinol, a new lignan in the heartwood of Taxus baccata II Indian J. Chem. 1972. — Vol. 10. — P. 677−680.
  465. Das B., Takhi M., Srinivas K.V.N.S., Yadav J.S. Phenolics from needles of Himalayan Taxus baccata II Phytochemistry. 1993. — Vol. 33, N 6. — P. 14 891 491.
  466. Das B., Rao S.P., Srinivas K.V.N.S., Yadav J.S. Lignans, biflavones and taxoids from Himalayan Taxus baccata II Phytochemistry. 1995. — Vol. 38, N 3. — P. 715 717.
  467. Erdemoglu N., Sahin E., Sener B., Ide S. Structural and spectroscopic characteristics of two lignan from Taxus baccata L. // J. Mol. Struct. 2004. — Vol. 692, N 1−3.-P. 57−62.
  468. Erdemoglu N., Sener B., Ozean Y., Ide S. Structural and spectroscopic characteristics of two new dibenzylbutane type lignans from Taxus baccata L. // J. Mol. Struct. 2003. — Vol. 655, N 3. — P. 459−466.
  469. Kawamura F., Kikuchi Y., Ohira T., Yatagai M. Phenolic constituents of Taxus cuspidta I: lignans from the roots // J. Wood. Sei. 2000. — Vol. 46, N 2. — P. 167 171.
  470. Banskota A.H., Tezuka Y., Nguen N.T., Awale S., Nobukawa T., Kadota S. DPPH radical scavenging and nitric oxide inhibitory activities of the constituents from the wood of Taxus yunnanensis II Planta Med. 2003. — Vol. 69, N 6. — P. 500−505.
  471. Braca A., De Tommasi N., Bari L.D., Pizza C., Politi M., Morelli I. Antioxidant principles from Bauhinia tarapotensis II J. Nat. Prod. 2001. — Vol. 64, N 7. — P. 892−895.
  472. Prasad K. Hydroxyl radical-scavenging property of secoisolariciresinol diglucoside (SDG) isolated from flax-seed // Mol. Cell. Biochem. 1997. — Vol. 168, N 1−2. -P 117−123.
  473. Prasad K. Oxidative stress as a mechanism of diabetes in diabetic BB prone rats: effect of secoisolariciresinol diglucoside (SDG) // Mol. Cell. Biochem. 2000. — Vol. 209, N 1−2.-P. 89−96.
  474. Prasad K., Mantha S.V., Muir A.D., Westcott N.D. Protective effect of secoisolariciresinol diglucoside against streptozotocin-induced diabetes and its mechanism // Mol. Cell. Biochem. 2000. — Vol. 206, N 1−2. — P. 141−149.
  475. Chen C.-C., Chen H.-Y., Shiao M.-S., Lin Y.-L., Kuo Y.-H., Ou J.-C. Inhibition of low density lipoprotein oxidation by tetrahydrofurofuran lignans from Forsythia suspensa and Magnolia coco II Planta Med. 1999. — Vol. 65, N 8. — P. 709−711.
  476. Navarro E., Alonso S.J., Trujillo J., Jorge E., Perez C. General behavior, toxicity, and cytotoxic activity of elenoside, a lignan from Justicia hyssopifolia II J. Nat. Prod. -2001.-Vol. 64, N 1.-P. 134−135.
  477. Chen l.-S., Chen J.-J., Duh C.-Y., Tsai l.-L. Cytotoxic lignans from formosan Hernandia nymphaeifolia II Phytochemistry. 1997. — Vol. 45, N 5. — P. 991−996.
  478. Ma C.-m., Nakamura N., Min B.S., Hattori M. Triterpenes and lignans from Artemisia caruifolia and their cytotoxic effects on Meth-A and LLC tumor cell lines // Chem. Pharm. Bull. 2001. — Vol. 49, N 2. — P. 183−187.
  479. Cho J.Y., Kim A.R., Park M.H. Lignans from the rhizomes of Coptis japonica differentially act as anti-inflammatory principles // Planta Med. 2001. — Vol. 67, N 4. -P. 312−316.
  480. Kupeli E., Erdemoglu N. Yesilada E., Sener B. Anti-inflammatory and antinociceptive activity of taxoids and lignans from the heartwood of Taxus baccata L. // J. Ethnopharmacol. 2003. — Vol. 89, N 2−3. — P. 265−270.
  481. Gurbuz I., Erdemoglu N., Yesilada E., Sener B. Anti-ulcerogenic lignans from Taxus baccata L. // Z. Naturforsch. 2004. — Vol. 59, N 3−4. — P. 233−236.
  482. Ishida J., Wang H.-K., Oyama M., Cosentino M.L., Hu C.-Q., Lee K.-H. Anti-AIDS agents. 46. Anti-HIV activity of harman, an anti-HIV principle from Symplocos setchuensis, and its derivatives // J. Nat. Prod. 2001. — Vol. 64, N 7. — P. 958−960.
  483. Wang C.-Y., Sun S.-W., Lee S.-S. Pharmacokinetic and metabolic studies of retrojusticidin B, a potential anti-viral lignan, in rats // Planta Med. 2004. — Vol. 70, N 12.-P. 1161−1165.
  484. Gertsch J., Tobler R.T., Brun R., Sticher O., Heilmann J. Antifungal, antiprotozoal, cytotoxic and piscicidal properties of justicidin B and a new arylnaphthalide lignan from Phyllanthus piscatorum II Planta Med. 2003. — Vol. 69, N 5. — P. 420−424.
  485. Xia Z.-Q., Costa M.A., Proctor J., Davin L.B., Lewi’s N.G. Dirigent-mediated podophyllotoxin biosynthesis in Linum flavum and Podophyllum peltatum II Phytochemistry. 2000. — Vol. 55, N 6. — P. 537−549.
  486. Kuhlmann S., Kranz K., Lucking В., Alfermann A.W., Petersen M. Aspects of cytotoxic lignan biosynthesis in suspension cultures of Linum nodiflorum II Phytochem. Rev. 2002. — Vol. 1, N 1. — P. 37−43.
  487. C.A. Химическое исследование хиноидных пигментов дальневосточных представителей семейства Boraginaceae (бурачниковые): дис.. канд. хим. наук / Тихоокеан. ин-т биоорган, химии ДВО РАН. -Владивосток, 1980. 151 с.
  488. О.Е., Федореев С. А., Денисенко В.А, Максимов О. Б., Горовой П. Г. Нафтахиноны Lithospermum erythrortizon II Химия природ, соединений. -1976.-№ 6.-С. 726−730.
  489. О.Е., Федореев С. А., Денисенко В. А., Максимов О. Б. Новый хиноидный пигмент из Lithospermum erythrortizon II Химия природ, соединений.- 1977. № 5. — С. 702−703.
  490. С.А., Кривощекова О. Е., Денисенко В. А., Горовой П. Г., Максимов О. Б. Хиноидные пигменты дальневосточных представителей семейства Boraginaceae //Химия природ, соединений. 1979. — № 6. — С. 625−630.
  491. В.А., Федореев С. А., Мищенко Н. П. Установление структуры нового хиноидного пигмента из Lithospermum erythrortizon методом спектроскопии ЯМР 1Н и 13С. Владивосток, 1979. — 7 с. — Деп. в ВИНИТИ 27.06.79, № 2544.
  492. В.М., Федореев С. А., Кривощекова О. Е., Горовой П. Г., Иванова И. Г. Хемотаксономическое исследование дальневосточных Boraginaceae // Хемосистематика и эволюц. биохимия высших растений: тез. докл. М., 1979.- С. 84−85.
  493. С.А., Набиуллин А. А. Хиноидные пигменты дальневосточных представителей семейства Boraginaceae // 5-я Молодеж. конф. по синтетич. иприрод, физиол. актив, соединениям, посвящ. 60-летию Сов. Армении: тез. докл. Ереван, 1980. — С. 38.
  494. Cho М.-Н., Paik Y.-S., Hahn T.-R. Propionylshikonin from the roots of Lithospermum erythrorhizon II Arch. Pharm. Res. 1999. — Vol. 22, N 4. — P 414 416.
  495. Н.П., Робинович A.M., Тареева H.A., Биологическая характеристика роста Lithospermum erythrorhizon Sieb. et Zucc. в Московском районе и содержание в нем шиконина // Фармация. 1979. — Т. 28, № 3. — С. 28−31.
  496. Н.Н. Синтез нафтохиноидных пигментов растений семейства бурачниковых (Boraginaceae) и родственных соединений: дис.. канд. хим. наук / Тихоокеан. ин-т биоорган, химии ДВО РАН. Владивосток, 1997. — 155 с.
  497. А.А., Федореев С. А., Дешко Т. Н. Круговой дихроизм хиноидных пигментов и дальневосточных представителей семейства Boraginaceae // Химия природ, соединений. 1983. — № 5. — С. 568−573.
  498. М.М., Булгаков В. П., Журавлев Ю. Н., Федореев С. А. Биосинтез производных шиконина в каллусной культуре Lithospermum erythrorhizon Sieb. et Zucc. II Раст. ресурсы. 1991. — Т. 27, вып. 4. — С. 78−81.
  499. Quesnel А.А., Ellis В.Е. Comparison of UV irradiation and p-fluorophenylalanine as selective agents for production of aromatic compounds in plant cell cultures // J. Biotechnol. 1989. — Vol. 10, N 1. — P. 27−37.
  500. Bulgakov V.P., Fedoreyev S.A., Kiselev K.V., Shkryl Y.N., Inyushkina Y.V., Mischenko N.P., Zhuravlev Y.N. Manipulation of secondary metabolism in cultured plant cells by agrobacterium го/genes//J. Biotechnol. 2008. — Vol. 129, N 136S. -P. S131.
  501. Н.И., Максимов О. Б., Федореев С. А., Денисенко В. А., Глазунов В. П., Покушалова Т. В., Глебко Л. И. О нативности компонентов экстрактов древесины Maackia amurensis // Xимия природ, соединений. 1999. — № 5. — С. 664−669.
  502. С.А., Кулеш Н. И., Глебко Л. И., Покушалова Т. В., Веселова М. В., Саратиков A.C., Венгеровский А. И., Чучалин B.C. // Препарат максар из дальневосточного растения маакии амурской // Хим.-фарм. журн. 2004. — Т. 38, № 11.-С. 22−26.
  503. Н.И., Василевская H.A., Веселова М. В., Денисенко В. А., Федореев С. А. Минорные полифенолы из древесины Maackia amurensis // Химия природ, соединений. 2008. — № 6. — С. 575−577.
  504. Baba К., Kido Т., Maeda К., Taniguchi М., Kozawa М. Two stilbenoids from Cassia garrettiana// Phytochemistry. 1992. — Vol. 31, N 9. — P. 3215−3218.
  505. Nagimova A.D., Zhusurova G.E., Erzhariova M.S. Synthesis of biologically active bromine derivatives of quercetin // Chem. Nat. Compd. 1996. — Vol. 32, N 5. — P. 695−697.
  506. Fedoreyev S.A., Pokushalova T.V., Veselova M.V., Glebko L.I., Kulesh N.I., Muzarok T.I. Seletskaya L.D., Bulgakov V.P., Zhuravlev Yu.N. Isoflavonoid production by callus cultures of Maackia amurensis // Fitoterapia. 2000. — Vol. 71, N 4. — P. 365−372.
  507. Fedoreyev S.A., Bulgakov V.P. Isoflavonoid composition of the Maackia amurensis callus culture // J. Biotechnol. 2008. — Vol. 136. — P. S140.
  508. Veselova M.V., Fedoreyev S.A., Bulgakov V.P., Krivoschekova O.E. Isoflavonoids from Maackia amurensis cell culture // 1st Far-Eastern intern, symp. on Life Sciences 2008, Vladivostok, Sept. 2−7, 2008: abstrs. Vladivostok, 2008. — P. 82.
  509. Kobayashi M., Ohta Y. Induction of stress metabolite formation in suspension cultures of Vigna angularis II Phytochemistry. 1983. — Vol. 22, N 5. — P. 12 571 261.
  510. А.И., Чучалин B.C., Буркова В. Н., Федореев С. А. Опыт разработки гепатопротекторов природного происхождения научной школой профессора A.C. Саратикова // Бюл. сиб. медицины. 2006. — Т. 5, прил. 2. — С. 19−25.
  511. A.C., Чучалин B.C., Ратькин A.B., Ратькин Е. В., Федореев С. А., Булгаков В. П. Гепатопротективные свойства полифенольных комплексов из древесины и клеточной культуры маакии амурской // Бюл. сиб. медицины. -2008.-Т. 7, № 1.-С. 51−55.
  512. В.И., Иванова И. Л., Федореев С. А., Кулеш Н. И. Антиоксидантное действие гепатопротектора максара при экспериментальном диабете // Эксперим. и клин, фармакология. 2002. — Т. 65, № 4. — С. 33−36.
  513. Э.И., Венгеровский А. И., Гайсаев P.O., Саратиков A.C., Федореев С. А. Новое гепатозащитное средство максар // Сиб. журн. гастроэнтерологии и гепатологии. — 1999. — № 8. — С. 46−48.
  514. Т.П., Чучалин B.C., Хоружая Т. Г., Белова Л. С., Федореев С. А., Венгеровский А. И., Саратиков A.C. Рациональные лекарственные формы гепатопротекторов растительного происхождения // Фармация. 1999. — № 6. -С. 33−34.
  515. Н.И., Веселова М. В., Федореев С. А., Денисенко В. А. Полифенолы из стеблей Vitis amurensis II Химия природ, соединений. 2006. — № 2. — С. 194 195.
  516. Khan М.А., Nabi S.G., Prakash S., Zaman A. Pallidol, a resveratrol dimer from Cissus pallida II Phytochemistry. 1986. — Vol. 25, N 8. — P. 1945−1948.
  517. Tanaka T., Ohyama M., Morimoto K., Asai F., linuma M. A resveratrol dimer from Parthenocissus tricuspidata II Phytochemistry. 1998. — Vol. 48, N 7. — P. 1241— 1243.
  518. Kiselev K.V., Dubrovina A.S., Veselova M.V., Bulgakov V.P., Fedoreyev S.A., Zhuravlev Y.N. The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells // J. Biotechnol. 2007. — Vol. 128, N 3. — P. 681−692.
  519. Fedoreyev S.A., Vasilevskaya N.A., Veselova M.V., Denisenko V.A., Dmitrenok P. S., Ozhigova I.T., Muzarok T.I., Zhuravlev Yu.N. A new C-14 oxygenated taxane from Taxus cuspidata cell culture // Fitoterapia. 1998. — Vol. 69, N 5. — P. 430−432.
  520. Menhard В., Eisenreich W., Hylands P.J., Bacher A., Zenk M.H. Taxoids from cell cultures of Taxus chinensis И Phytochemistry. 1998. — Vol. 49, N 1. — P. 113 125.
  521. King F.E., Jurd L., King T.J. Isotaxiresinol (3'-demethylisolariciresinol), a new lignan extracted from the heartwood of English yew Taxus baccata II J. Chem. Soc. -1952.-P. 17−24.
  522. Charlton J.L. Antiviral activity of lignans // J. Nat. Prod. 1998. — Vol. 61, N 11.1. P. 1447−1451.
  523. Raffaelli В., Hoikkala A., Leppala E., Wahala K. Enterolignans // J. Chromatogr. B. 2002. — Vol. 777, N 1−2. — P. 29-^3.
  524. Das В., Takhi M., Srinivas K.V.N.S., Yadav J.S. A lignan from needles of Himalayan Taxus baccata II Phytochemistry. 1994. — Vol. 36, N 4. — P. 10 311 033.
  525. Jew S.-S., Lim D.-Y., Bae S.-Y., Kim H.-A., Kim J.-H., Lee J., Park H.-G. Enantioselective synthesis of (2R, 3S)-(+)-catechin // Tetrahedron: Asymmetry. -2002. Vol. 13, N 7. — P. 715−720.
  526. Porter L.J., Newman R.H., Foo L.Y., Wong H., Hemingway R.W. Polymeric proanthocyanidins. I3C N.M.R. studies of procyanidins // J. Chem. Soc. Perkin Trans. Pt. 1.-1982,-N5.-P. 1217−1221.
  527. Bilia A.R., Morelli I., Hamburger M., Hostettmann K. Flavans and A-type proanthocyanidins from Prunus prostrata II Phytochemistry. 1996. — Vol. 43, N 4. -P. 887−892.
  528. Markham K.R. and Ternai B. 13C NMR of flavonoids-ll. Flavonoids other then flavone and flavono! aglycones // Tetrahedron. 1976. — Vol. 32, N 21. — P. 26 072 612.
  529. M.B., Федореев C.A., Василевская H.A., Денисенко В. А., Герасименко А. В. Антиоксидантная активность полифенолов из дальневосточного растения тиса остроконечного // Хим.-фарм. журн. 2007. -Т. 41, № 2.-С. 29−34.
  530. Н.К., Макарченко А. Е., Щелокова О. В., Вировая М. В. Антиоксидантная активность фенольных метаболитов из морских губок // Химия природ, соединений. 2004. — № 4. — С. 305−308.
  531. SHELXTL/PC, Versions 5.10. An Integrated system for solving, refining and displaying crystal structures from diffraction data. Bruker AXS Inc., Madison, Wl, 1998.
  532. Sheldrick G.M. A short history of SHELX // Acta Crystallogr. A. 2008. — Vol. 64, N 1. — P. 112−122.
  533. Bulgakov V.P., Khodakovskaya M.V., Labetskaya N.V., Chernoded G.K., Zhuravlev Y.N. The impact of plant rolC oncogene on ginsenoside production by ginseng hairy root cultures // Phytochemistry. 1998. — Vol. 49, N 7. — P. 19 291 934.
  534. Yoon J.S., Sung S.H., Park J. H, Kim Y.C. Flavonoids from Spatholobus suberectus II Arch. Pharm. Res. 2004. — Vol. 27, N 6. — P. 589−592
  535. Wei J.H., Liu S., Fedoreyev S.A., Voinov V.G. A Study of resonance electron capture ionization on a quadrupole tandem mass spectrometer // Rapid Commun. Mass Spectrom. -2000. Vol.14, N 18. — P. 1689−1694.
  536. Biggs D.R., Lane G.A. Identification of isoflavones calycosin and pseudobaptigenin in Trifolium pratense II Phytochemistry. 1978. — Vol. 17, N 9. -P.1683−1684.
  537. Kobayashi M., Noguchi H., Sankawa U. Formation of chalcones and isoflavones by callus culture of Glycyrrhiza uralensis with different production patterns // Chem. Pharm. Bull. 1985. — Vol. 33, N 9. — P. 3811−3816.
  538. Markham K.R., Mabry T.J. The identification of twenty-three 5-deoxy- and ten 5-hydroxy-flavonoids from Baptisia lecontei (Leguminosae) // Phytochemistry. 1968. -Vol. 7, N5.-P. 791−801.
  539. Van Heerden F.R., Brandt E.V., Roux D.G. Synthesis of the pyranoisoflavonoid, heminitidulan. Isoflavanoid and rotenoid glycosides from the bark of Daibergia nitidda Welw. ex Bak // J. Chem. Soc. Perkin Trans. Pt. I. 1980. — N 11. — P. 24 632 469.
  540. Singab A.N.B. Flavonoids from Iris spuria (Zeal) cultivated in Egypt // Arch. Pharm. Res. -2004. Vol. 27, N 10. — P. 1023−1028.
  541. Gottlieb O.R., da Rocha A.I. 5-O-methylgenistein from Ormosia excelsa II Phytochemistry. 1972. — Vol. 11, N 3. — P. 1183.
  542. Nakajima K., Taguchi H., Endo Т., Yosioka I. The constituents of Scirpus fluviatilis (Torr.) A. Gray. I. The structures of two new hydroxystilbene dimers, scirpusin A and В // Chem. Pharm. Bull. 1978. — Vol. 26, N 10. — P. 3050−3057.
  543. Osawa K., Yasuda H., Maruyama Т., Morita H., Takeya K., Itokawa H. Isoflavanones from the heartwood of Swartzia polyphylla and their antibacterial activity against cariogenic bacteria // Chem. Pharm. Bull. 1992. — Vol. 40, N 11. -P.2970−2974.
  544. Youssef D.T.A., Ramadan M.A., Khalifa A.A. Acetophenones, a chalcone, a chromone and flavonoids from Pancratium maritimum II Phytochemistry. 1998. -Vol. 49, N 8. — P. 2579−2583.
  545. .С., Байбурин Ф. Я., Прокопенко Л. Г. Иммуномодулирующее и антиокидантное действие (3-каротина и эссенциале при нарушении липидного обмена // Эксперим. и клинич. фармакол. 1998. — Т. 61, № 2. — С. 41−44.
  546. Т.П., Эндакова Э. А., Янькова В. И. Руководство по методам исследования параметров системы «Перекисное окисление липидов -антиоксидантная защита» в биологических жидкостях. Владивосток: Изд-во Дальневосточного университета, 2003. — 78 с.
  547. М.С., Латинова A.M. Метод оценки перекисного окисления липидов // Лаб. дело. 1985. — № 1. — С. 60−69.
  548. Moron M.S., Depierre J.W., Mannervik В. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver // Biochim. Biophys. Acta. 1979. — Vol. 582, N 1. — P. 67−78.
  549. Bidlack W.R., Tappel A.L. Fluorescent products of phospholipids during lipid peroxidation // Lipids. 1973. — Vol. 8, N 4. — P. 203−207.
  550. P.M., Варшкявичене 3.3., Грибаускас П. С. Одновременное флуориметрическое определение концентрации витаминов, А и Е в сыворотке крови // Лаб. дело. -1984. № 6. — С. 362−365.
  551. C.M. Исследование синтетических и природных антиоксидантов in vitro и in vivo. M.: Наука, 1992.
  552. М. Техника липидологии. М.: Мир, 1975. — 322 с.
  553. Amenta J.S. A rapid chemical method for quantification of lipids separated by thin-layer chromatography // J. Lipid. Res. 1964. — Vol. 5, № 2. — P. 270−272.
  554. Л.И., Соминский В. Н., Шибаева Т. Н., Слинько В. Н. Модификация бромсульфалеиновой пробы для изучения функционального состояния печени у крыс // Гигиена и санитария. 1976. — № 3. — С. 59−61.
  555. Fonseca S.F., Campello J.P., Barata L.E.S., Ruveda E.A. 13C NMR spectral analysis of lignans from Araucaria angustifolia II Phytochemistry. 1978. — Vol. 17, N 3. — P. 499−502.
  556. Senba Y., Nishishita Т., Saito K., Yoshioka H., Yoshioka H. Stopped-flow and spectrophotometric study on radical scavenging by tea catechins and the model compounds // Chem. Pharm. Bull. 1999. — Vol. 47, N 10. — P. 1369−1374.
  557. О.Б., Горовой П. Г., Чумак Г. Н. Содержание антиоксидантов в семенах некоторых видов флоры Приморского края // Раст. ресурсы. 1990. -Т. 26, вып. 4. — С. 487—498.
  558. В.П., Федореев С. А., Журавлев Ю. Н. Биотехнология здоровью человека: научные достижения и первые шаги инноваций на Дальнем Востоке // Вестн. ДВО РАН. — 2004. — № 3. — С. 93−99.
Заполнить форму текущей работой