Математическое моделирование двигательного аппарата живых клеток
Диссертация
Движение ресничек и жгутиков — это одно из частных проявлений биологической подвижности. Выдающийся русский ученый В. А. Энгельгардт (1894−1984 гг.) ввел принцип «единства во множестве», определяющий единство механизма множества явлений, связанных с понятием биологической подвижности. К проявлениям биологической подвижности относятся также: сокращения различных типов мышц, движения амебы… Читать ещё >
Список литературы
- Албертс В., Брей Д., Лыоис Д., Рэфф М., Роберте К., Уотсои Дж. Молекулярная биология клетки. В 5-ти т. Т. 3. — М.: «Мир», 1987 г. 296 с.
- Аругаанян О.В., Залеткин С. Ф. Численное решение обыкновенных дифференциальных уравнений на Фортране. — М.: Изд-во МГУ, 1990 г. 336 с.
- Бахвалов Н.С., Жидков Н. М., Кобельков Г. М. Численные методы. — М.: «ЛБЗ», 2002 г. 632 с.
- Васильев Ф.П. Численные методы решения экстремальных задач. — М.: «На-1 ука», 1980 г. 520 с.
- Ватульян А.О. Обратные задачи в механике деформируемого твердого тела. — М.: «ФИЗМАТЛИТ», 2007 г. 224 с.
- Вержбицкий В.М. Основы численных методов. — М.: «Высшая школа», 2002 г. 840 с.
- Гантмахер Ф.Р. Лекции по аналитической механике. — М.: ФИЗМАТЛИТ, 2001 г. 264 с.
- Дещеревский В.И. Математические модели мышечного сокращения. — М.: «Наука», 1977 г. 161 с.
- Калиткин Н.Н., Панченко С. Л. Оптимальные схемы для жестких неавтоном-- пых систем // Математическое моделирование. Т. 11, № 6, 1999. С. 52−81.
- Квасов Б.И. Методы изогеометрической аппроксимации сплайнами. — М. Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2006 г. 416 с.
- Пановко Я.Г. Введение в теорию механических колебаний. — М.: «Наука», 1970 г. 240 с.
- Покорный Ю.В. Оптимальные задачи. — М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2008 г. 160 с.
- Ракитский Ю.В., Устинов С. М., Черноруцкий И. Г. Численные методы решения жестких задач. — М.: «Наука», 1979 г. 209 с.
- Растригин JI.А., Маджаров Н. Е. Введение в идентификацию объектов управления. — М.: «Энергия», 1977 г. 216 с.
- Рубин А.Б. Биофизика. В 2-х т. Т. 2. — М.: Изд-во МГУ, 2004 г. 469 с.
- Соболь И.М., Статников Р. Б. Выбор оптимальных параметров в задачах со многими критериями. — М.: «Наука», 1981 г. 110 с.
- Трегубов В.П., Соколов А. Б. Моделирование движения ресничек // Тезисы докладов IV Всероссийской конференции по биомеханике. — Нижний Новгород, 1998 г., с. 87.
- Хайрер Э., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Жесткие и дифференциально-алгебраические задачи. — М.: «Мир», 1999 г. 685 с.
- Хайрер Э., Нерсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи. — М.: «Мир», 1990 г. 512 с.
- Blake J.R., Winet Н. On the mechanics of muco-ciliary transport // Biorheology. Vol.'17, 1980, pp. 125−134.
- Brokaw C.J. Computer simulation of flagellar movement I. Demonstration of stable bend propagation and bend initiation by the sliding filament model // Biophysical Journal. Vol. 12, 1972, pp. 564−586.
- Brokaw C.J. Computer simulation of flagellar movement IV. Properties of an oscillatory two-state cross-bridge model. // Biophysical Journal. Vol. 16, 1976, pp. 10 291 041.
- Brokaw C.J. Computer simulation of flagellar movement VI. Simple curvature-controlled models are incompletely specified // Biophysical Journal. Vol. 48, 1985, pp. 633−642.
- Brokaw C.J. Stochastic simulation of processive and oscillatory sliding using a two-headed model for axonemal dynein // Cell Motility and the Cytoskeleton. Vol. 47, 2000, pp. 108−119.
- Brokaw C.J., Luck D.J.L., Huang B. Analysis of the movement of Chlamydomonas flagelia: the function of the radial-spoke system is revealed by comparison of wild-type and mutant flagelia // Journal of Cell Biology. Vol. 92, 1982, pp. 722−732.
- Buceta J., Ilbanes M., Rasskin-Gutman D., Okada Y., Hirokawa N., Izpisua-Belmonte J.C. Nodal cilia dynamics and the specification of the left-right axis in early vertebrate embryo development // Biophysical Journal. Vol. 89, 2005, pp. 2199−2209.
- Camalet S., Julicher F. Generic aspects of axonemal beating // New Journal of Physics. Vol. 2, 2000, pp. 24.1−24.23.
- Camalet S., Julicher F., Prost J. Self-organized beating and swimming of internally driven filaments. // Physical Review Letters. Vol. 82, j® 8, 1999, pp. 1590−1593.
- Costello D.P. A new theory on the mechanics of ciliary and flagellar motility //
- Biological Bulletin. Vol. 145, 1973, pp. 292−309.
- Curry A.M., Rosenbaum J.L. Flagellar radial spoke: a model molecular gcnetic system for studying organelle assembly // Cell Motility and The Cytoskeleton. Vol. 24, 1993. pp. 224−232.
- Dillon R.H., Fauci L.J. An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating // Journal of Theoretical Biology, Vol. 207,2000, pp. 415−430.
- Dillon R.H., Fauci L.J., Omoto C., Yang X. Fluid dynamic models of flagellar and ciliary beating // Annals of New York Academy of Science. Vol. 1101, 2007, pp. 494−505.
- Dillon R.H., Fauci L.J., Yang X. Sperm motility and multiciliary beating: an integration mechanical model // Computers and Mathematics with Applications, Vol. 52, 2006, pp. 749−758.
- Eley L., Yates L.M., Goodship J.A. Cilia and disease // Current opinion in genetics and development. Vol. 15, 2005, pp. 308−314.
- Foster «VV.M. Mucociliary transport and cough in humans // Pulmonary Pharmacology and Therapeutics. Vol. 15, 2002, pp. 277−282.
- Goedecke D.M., Elston T.C. A model for the oscillatory motion of single dynein molecules // Journal of Theoretical Biology. Vol. 232, 2005, pp. 27−39.
- Gray J., Hancock G.J. The propulsion of sea-urchin spermatozoa // Proceedings of the Royal Society of London, A. Vol., 1955, pp. 802−814.
- Grotberg J.B. Respiratory fluid mechanics and transport processes // Annual Review of Biomedical Engineering. Vol. 3, 2001, pp. 421−457.
- Gueron S., Levit-Gurevich K. Computation of the internal forces in cilia: application to ciliary motion, the effects of viscosity, and cilia interactions // Biophysical Journal. Vol. 74, 1998, pp. 1658−1676.
- Gueron S., Levit-Gurevich K. Energetic considerations of ciliary beating and the advantage of metachronal coordination // Proceedings of National Academy of Science USA. Vol. 96, JVs 22, 1999, pp. 12 240−12 245.
- Gueron S., Levit-Gurevich K. A three-dimensional model for ciliary motion based on the internal 9+2 structure // Proceedings of the Royal Society of London, B. Vol. 268,2001, pp. 599−607.
- Gueron S., Levit-Gurevich K, Liron N., Blum J.J. Cilia internal mechanism and metachronal coordination as the result of hydrodynamic coupling // Proceedings of National Academy of Science of the USA. Vol. 94, 1997, pp. 6001−6006.
- Gueron S., Liron N. Ciliary motion modelling, and dynamic multicilia interactions // Biophysical Journal. Vol. 63, 1992, pp. 1045−1058.
- Gueron S., Liron N. Simulations of three-dimensional ciliary beats and cilia interactions
- Biophysical Journal. Vol. 65, 1993, pp. 499−507.
- Guirao В., Joanny J.F. Spontaneous creation of macroscopic flow and metachronal waves in an array of cilia // Biophysical Journal. Vol. 92, 2007, pp. 1900−1917.
- Hancock G.J. The self-propulsion of microscopic organisms through liquids // Proceedings of the Royal Society of London, A. Vol. 217, 1952, pp. 96−121.
- Hines M., Blum J.J. Bend propagation in flagella I. Derivation of equations of motion and their simulation // Biophysical Journal. Vol. 23, 1978, pp. 41−57.
- Hines M., Blum J.J. Bend propagation in flagella II. Incorporation of dynein cross-bridge kinetics into the equation of motion // Biophysical Journal. Vol. 25, 1979, pp. 421−442.
- Hines M., Blum J.J. On the contribution of moment-bearing links to bending and twisting in a three-dimensional sliding filament model // Biophysical Journal. Vol. 46, 1984, pp. 559−565.
- Hines M., Blum J.J. On the contribution of dynein-like activity to twisting in a three-dimensional sliding filament model // Biophysical Journal. Vol. 47, 1985, pp. 705 708.
- Hines M., Blum J.J. Three-dimensional mechanics of eukaryotic flagella // Biophysical Journal. Vol. 41, 1983, pp. 67−79.
- Ilolwill M.E.J., Satir P. A physical model of microtubule sliding in ciliary axonemes // Biophysical Journal. Vol. 58, 1990, pp. 905−917.
- Hoops H.J., Witman G.B. Basal bodies and associated structures are not required for normal flagellar motion or phototaxis in the Green Alga Chlorogonium elongatum // Journal of Cell Biology, vol. 100, 1985, pp. 297−309.
- Ibanez-Tallon I., Heintz N., Omran H. To beat or not to beat: roles of cilia in development and disease // Human Molecular Genetics. Vol. 12, 2003, Review Issue 1, pp. R27-R35.
- Ji В., Gao H. Mechanical properties of nanostructure of biological materials // Journal of the Mechanics and Physics of Solids. Vol. 52, 2004, pp. 1963−1990.
- Johnson K.A., Wall J.S. Structure and molecular weight of dynein ATPase // Journal of Cell Biology, vol. 96, 1983. pp. 669−678.
- Klysik M. Ciliary syndromes and treatment // Pathology — Research and Practice. Vol. 204, 2008, pp. 77−88.
- Kruse K., Julicher F. Self-organization and mechanical properties of active filament bundles // Physical Review E. Vol. 67, 2003, pp. 51 913−1-51 913−16.
- Lim C.T., Zhou E.H., Quek S.T. Mechanical models for living cells a review // Journal of Biomechanics, Vol. 39, 2006, pp. 195−216.
- Lindemann C.B. Testing the geometric clutch hypotheses // Biology of the Cell.
- Vol.-96, 2004, pp. 681−690.
- Lindemann C.B. The geometric clutch as a working hypotheses for future research on cilia and flagella // Annals of New York Academy of Science. Vol. 1101, 2007, pp. 477−493.
- Lindemann C.B., Kanous K.S. «Geometric clutch11 hypotheses of axonemal function: key issues and testable predictions // Cell Motility and the Cytoskeleton. Vol. 31, 1995, pp. 1−8.
- Liron N., Meyer F.A. Fluid transport in a thick layer above an active ciliated surface // Biophysical Journal. Vol. 30, 1980, pp. 463−472.
- Lowe C.P. A hybrid particle-continuum model for microorganism motility // Future Generation Computer Systems, Vol. 17, 2001, pp. 853−862.
- Machemer H. Ciliary activity and the origin of metachrony in Paramecium // Journal of Experimental Biology. Vol. 57, 1972. P. 239−259.
- Machin K.E. Wave propagation along flagella // Journal of Experimental Biology. Vol.35, 1958, pp. 796−806.
- Mandadapu K.K., Govindjee S., Mofrad M.R.K. On the cytoskeleton and the soft glassy rheology // Journal of Biomechanics. Vol. 41, 2008, pp. 1467−1478.
- Mans D.A., Voest E.E., Giles R.H. All along the watchtower: is the cilium a tumor suppressor organelle? // Biochimica et Biophysica. Vol. 1786, 2008, pp. 114−125.
- Mayer S. Numerical simulation of flow fields and particle trajectories in ciliary suspension feeding // Bulletin of Mathematical Biology. Vol. 62, 2000, pp. 1035−1059.
- Miles C.A., Holwill M.E.J. A mechanochemical model of flagellar activity // Biophysical Journal. Vol. 11, 1971, pp. 851−859.
- Mitchell D.R. Orientation of the central pair complex during flagellar bend formation in Chlamydomonas // Cell Motility and the Cytoskeleton, vol. 156, 2003, pp. 120−129.
- Mitran S.M. Metachronal wave formation in a model of pulmonary cilia // Computers and Structures, Vol. 85, 2007, pp. 763−774.
- Murase M. The dynamics of cellular motility. — John Wiley and Sons, USA, NY, 1992. 358 p.
- Nicastro D., Schwartz C., Pierson J., Gaudette R., Porter M.E., Mcintosh J.R. The molecular architecture of axonemes revealed by cryoelectron tomography // Science. Vol. 313, 2006, pp. 944−948.
- Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical recipes in C: The art of scientific computing. — Cambridge: Cambridge University Press, 1997. 1018 p.
- Rikmenspoel R. The tail movement of bull spermatozoa. Observations and model calculations // Biophysical Journal. Vol. 5, 1965, pp. 365−392.
- Rikmenspoel R. Elastic properties of the sea urchin sperm flagellum // Biophysical ¦ Journal. Vol. 6, 1966, pp. 471−479.
- Rikmenspoel R. Contractile mechanism in flagella // Biophysical Journal. Vol. 11, 1971, pp. 446−463.
- Rikmenspoel R. Contractile events in the cilia of Paramecium, Opalina, Mytilus, and Phragmatopoma // Biophysical Journal. Vol. 16, 1976, pp. 445−470.
- Rikmenspoel R. The equation of motion for sperm flagella // Biophysical Journal. Vol. 23, 1978, pp. 177−206.
- Rikmenspoel R. Movements and active moments of bull sperm flagella as a function of temperature and viscosity // Journal of Experimental Biology. Vol. 108, 1984, pp. 205 230.
- Rikmenspoel R., Rudd W.G. The contractile mechanism in cilia // Biophysical Journal. Vol. 13, 1973, pp. 955−993.
- Silflow C.D., Lefebvre P. A. Assembly and motility of eukaryotic cilia and flagella. Lessons from Chlamydomonas reinhardtii // Plant Physiology, vol. 127, 2001, pp. 1500. 1507.
- Sleigh M.A., Barlow D.I. How are different ciliary beat patterns produced? // Symposia of the Society of Experimental Biology. Vol. 35, 1982, pp. 139−157.
- Smith D.J., Gaffney E.A., Blake J.R. Discrete cilia modelling with singularity distributions: application to the embryonic node and the airway surface liquid // Bulletin of Mathematical Biology. Vol. 69, 2007, pp. 1477−1510.
- Smith D.J., Gaffney E.A., Blake J.R. A model of tracer transport in airway surface liquid // Bulletin of Mathematical Biology. Vol. 69, 2007, pp. 817−836.
- Smith D.J., Gaffney Е.Л., Blake J.R. A viscoelastic traction layer model of mucociliary transport // Bulletin of Mathematical Biology. Vol. 69, 2007, pp. 289−327.
- Taylor G. Analysis of the swimming of microscopic organisms // Proceedings of the Royal Society of London, A. Vol. 209, 1951, pp. 447−461.
- Tokin I.В., Tregoubov V.P. Mathematical modelling of generation and control of flagellar and ciliar motility // 11th European Cytosceleton Forum. Book of Abstracts.1996, p. 70.
- Tokin I.B., Tregoubov V.P., Sokoloff A.B. Hypotheses and modelling of ciliary motility // Acta of Bioengineering and Biomechanics. Vol. 1, Supp. 1, 1999, pp. 515−518.
- Tregoubov V.P., Tokin I.B. Model study of ciliar motility normally and in pathology // World Congress on Medical Physics and Biomedical Engineering, Nice, 1997, Part 1, p.292.
- Tregoubov V.P. Mathematical modelling of cilium motility in normal and pathology cases // Abstracts of International Symposium «HYPOTHESIS III». SPb. 1999, pp. 142
- Tregoubov V.P., Sokoloff А.В., Grigorjeva N.V. Model study of ciliary movement mechanisms // XVIIIth Congress of International Society of Biomechanics. Book of Abstracts, 2001, pp. 342−343.
- Vilfan A., Julicher F. Hydrodynamic flow patterns and synchronization of beating cilia // Physical Review Letters. Vol. 96, pp. 58 102−1-58 102−4.
- Yang X., Dillon R.H., Fauci L.J. An integrative computational model of multiciliary beating // Bulletin of Mathematical Biology. Vol. 70, 2008, pp. 1192−1215.
- Zhu C., Bao G., Wang N. Cell mechanics: mechanical response, cell adhesion and molecular deformation // Annual Reviews of Biomedical Engineering, Vol. 02, 2000, pp.189.226.