Помощь в написании студенческих работ
Антистрессовый сервис

Выделение и изучение физико-химических и функциональных свойств антимикробных пептидов из лейкоцитов павиана гамадрила: Papio hamadryas L

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Поскольку на уровне пептидного продукта 0-дефенсины были найдены пока только у макаки резус, представляет интерес поиск других представителей этого нового и недостаточно изученного подсемейства дефенсинов у родственных видов обезьян. Эти данные могут быть полезны для понимания закономерностей возникновения и формирования разнообразия АМП дефенсинового семейства у приматов, в том числе… Читать ещё >

Выделение и изучение физико-химических и функциональных свойств антимикробных пептидов из лейкоцитов павиана гамадрила: Papio hamadryas L (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК СОКРАЩЕНИЙ
  • 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Современные представления о врожденном иммунитете млекопитающих
      • 1. 1. 1. Системы распознавания врожденного иммунитета млекопитающих 13 1.1.2.Гуморальные и клеточные эффекторы врожденного иммунитета млекопитающих
    • 1. 2. Нейтрофильный гранулоцит в защитных реакциях организма
      • 1. 2. 1. Хемотаксис нейтрофильных гранулоцитов
      • 1. 2. 2. Адгезия нейтрофильных гранулоцитов на поверхности объектов фагоцитоза 19 1.2.3.Эндоцитоз, формирование фаголизосомы, инактивация и киллинг фагоцитированных микробных клеток
    • 1. 3. Микробоцидные факторы нейтрофильных гранулоцитов
      • 1. 3. 1. Кислородзависимые факторы инактивации микроорганизмов
      • 1. 3. 2. Кислороднезависимые факторы инактивации микроорганизмов

      1.4.Антимикробные пептиды как молекулярные факторы врожденного иммунитета млекопитающих 24 1.4.1 .Классификация антимикробных пептидов 24 1.4.2.Общие структурные особенности антимикробных пептидов млекопитающих и механизмы их антимикробного действия

      1.4.3.Свойства антимикробных пептидов отличные от антимикробной активности

      1.4.4.Гены антимикробных пептидов, их экспрессия и постгрансляционная модификация антимикробных пептидов млекопитающих 36 1.4.5.Экспрессия антимикробных пептидов в клетках и тканях организма млекопитающих

      1.5.Антимикробные пептиды как возможные фармакологические агенты 45 2. МАТЕРИАЛЫ И МЕТОДЫ 46 2.1 .Получение лейкоцитарной массы, обогащенной нейтрофильными гранулоцитами 46 2.2.Экстрагирование катионных пептидов из лейкоцитов павиана гамадрила

      2.3.Ультрафильтрация экстрактов

      2.4.Выделение и очистка а-дефенсинов из экстракта лейкоцитов человека 47 2.4.Выделение и очистка а-дефенсинов из экстракта лейкоцитов кролика

      2.5.Выделение и очистка тета-дефенсина ЯТТЫ из экстракта лейкоцитов макаки резус

      2.6.Методы электрофоретического разделения и анализа пептидов

      2.6.1 .Электрофорез в полиакриламидном геле в кислой буферной системе 48 2.6.2.Электрофорез в полиакриламидном геле в присутствии додецилсульфата натрия 48 2.6.3.Препаративный электрофорез в полиакриламидном геле в кислой буферной системе

      2.7.0бращенно-фазовая высокоэффективная жидкостная хроматография

      2.8.Методы определения молекулярной массы пептидов 51 2.8.1 .Определение молекулярной массы методом электрофореза в полиакриламидном геле в присутствии додецилсульфата натрия

      2.8.2.0пределение молекулярной массы методом масс-спектрометрии МА1Л)1-ТОР

      2.9.0пределение аминокислотного состава пептидов

      2.10.Определение аминокислотной последовательности в молекулах пептидов 53 2.11.Определение наличия дисульфидных связей в молекулах пептидов с помощью окисления надмуравьиной кислотой 53 2.12.Определение количества дисульфидных связей в молекулах пептидов с помощью их восстановления и последующего алкилирования

      2.13.Методы определения концентраций пептидов

      2.14.Методы определения антимикробной активности пептидов 54 2.14.1.Микроорганизмы 54 2.14.2.0пределение антимикробной активности методом наложения гелей 55 2.14.3.Определение антимикробной активности методом радиальной диффузии пептидов в агарозном геле 56 2.14.4.0пределение минимальных ингибирующих концентраций пептидов 56 2.14.5.0пределение микробоцидного действия полученных пептидов 57 2.15.Определение влияния пептидов на проницаемость наружной и цитоплазматической мембран Е. соИ МЬ35р 57 2.1 б. Определение гемолитической активности пептидов 59 2.17.Статистическая обработка результатов 60 3. РЕЗУЛЬТАТЫ 61 3.1.Получение лейкоцитарной массы обезьян, обогащенной нейтрофильными гранулоцитами

      3.2.Выделение и очистка антимикробных пептидов из лейкоцитарной массы павиана гамадрила

      3.3.Определение молекулярных масс выделенных пептидов методом масс-спектрометрии MALDI-TOF

      3.4.0пределение наличия и количества дисульфидных связей в молекулах выделенных пептидов

      3.5.0пределение аминокислотного состава выделенных пептидов

      З.б.Определение первичной структуры выделенных пептидов

      3.7.Выделение и очистка циклического О-дефенсина RTD-1 из экстракта лейкоцитов макаки резус

      3.8.Изучение антимикробных свойств выделенных пептидов 85 3.8.¡-.Определение минимальных ингибирующих концентраций выделенных пептидов 85 3.8.2 .Микробоцидное действие выделенных пептидов 90 3.8.3.Изучение влияния различных условий среды на антимикробную активность выделенных пептидов

      3.8.Изучение влияния выделенных пептидов на проницаемость наружной и внутренней мембран Е. coli ML 3 5р

      3.9.Изучение гемолитической активности выделенных пептидов в отношении эритроцитов человека 100 4.0БСУЖДЕНИЕ РЕЗУЛЬТАТОВ 102 4.1 .Получение лейкоцитарной массы обезьян, обогащенной нейтрофильными гранулоцитами 102 4.2.Выделение и очистка антимикробных пептидов из лейкоцитарной массы павиана гамадрила 102 4.3.Определение первичных структур выделенных пептидов павиана гамадрила

      4.4.Выделение и очистка циклического 0-дефенсина RTD-1 из лейкоцитов макаки резус

      4.5.Изучение антимикробных свойств выделенных пептидов 113 4.5.1.Определение минимальных ингибирующих концентраций и микробоцидной активности выделенных пептидов 113 4.5.2.Влияние различных условий среды на антимикробную активность выделенных пептидов 116 4.5.2.1.Изменение антимикробной активности выделенных пептидов в зависимости от содержания NaCl в среде

      4.5.2.2.Изменение антимикробной активности выделенных пептидов в зависимости от pH среды

      4.5.2.3.Изменение антимикробной активности выделенных пептидов при добавлении в среду сыворотки крови

      4.6.Влияние выделенных пептидов на проницаемость наружной и внутренней мембран Е. coli ML 35p

      4.7.Гемолитическая активность выделенных пептидов в отношении эритроцитов человека

      5.ВЫВОДЫ

Использование обезьян в разнообразных медико-биологических исследованиях обусловлено их уникальным биологическим сходством с человеком по ряду генетических и физиологических параметров, что делает их подчас незаменимыми экспериментальными животными. Одним из наиболее перспективных направлений использования обезьян в биомедицинских исследованиях является инфекционная патология. На обезьянах удается воспроизвести в относительно адекватной форме большое количество инфекционных заболеваний, присущих человеку, причем значительная часть таковых не воспроизводится ни на одном другом животном. Наиболее широко используются в экспериментальной медицине низшие узконосые обезьяны макака резус (Macaca mulatto) и павиан гамадрил (Papio hamadryas), относящиеся к семейству мартышкообразных приматов (Лапин и др., 1987). Основой изучения инфекционных заболеваний в опытах на обезьянах является создание и сравнительное исследование той или иной модели инфекции и установления сходства и различия с аналогичными заболеваниями человека. При моделировании инфекционных процессов на обезьянах необходимо учитывать, что защитные факторы низших обезьян могут отличаться от таковых человека. В этой связи несомненный интерес представляет сравнительное изучение факторов врожденного иммунитета у низших обезьян и человека, в частности, катионных антимикробных пептидов (АМП) лейкоцитов крови. Накопленные к настоящему моменту данные позволяют сделать вывод о том, что эти пептиды являются одними из ключевых молекулярных компонентов системы врожденного иммунитета млекопитающих (Кокряков, 2006; Bevins, 2003). Для понимания закономерностей их возникновения и отбора в процессе эволюции необходимо дальнейшее накопление знаний о структурных и функциональных свойствах АМП у разных видов животных. Несмотря на то, что общее число известных АМП постоянно растет и уже превысило 1000, количество изученных АМП млекопитающих относительно невелико (http://www.bbcm.univ.trieste.it/). Подавляющее большинство охарактеризованных пептидов у животных этого класса образуют два семейства: дефенсины (Lehrer et al., 1993) и кателицидины (Zanetti et al., 1995; Lehrer, Ganz, 2002). Среди высших приматов из лейкоцитарных АМП наиболее полно изучены а-дефенсины лейкоцитов крови человека (Schneider et al., 2005). Среди низших узконосых обезьян а-дефенсины из лейкоцитов крови были выделены, очищены и охарактеризованы по структурным и антимикробным свойствам только у макаки резус (Tang et al., 1999b). Поиск лейкоцитарных АМП у макаки резус привел, кроме того, к открытою нового подсемейства дефенсинов: 9-дефенсинов, которые по структурным и функциональным свойствам существенно отличаются от других АМП млекопитающих (Tang et al., 1999аLeonova et al., 2001). Во-первых, 0-дефенсины являются макроциклическими пептидами, циклическая структура которых формируется пептидными, а не дисульфидными связями, как у dи ß—дефенсинов. Ранее пептиды с такой макроциклической структурой были описаны только у бактерий (Salomon, Farias, 1992; Martinez-Bueno et al., 1994) и высших растений (Derua et al., 1996). Во-вторых, мРНК для пептидной цепи 0-дефенсина RTD-1 (rhesus theta defensin) макаки резус (первого открытого представителя 9-дефенсинов) транскрибируется с двух различных генов и зрелая молекула пептида образуется в результате соединения пептидными связями двух молекул-предшественниц (Tang et al., 1999а). Таким образом, был открыт принципиально новый способ образования пептидных молекул посредством пост-трансляционной рекомбинации пептидов-предшественников. В третьих, молекулы 0-дефенсинов лишены амфипатичности, свойства, присущего практически всем известным АМП и, согласно современным воззрениям, необходимого для осуществления ими микробоцидной функции. Это может означать, что и механизмы антимикробного действия этих пептидов отличны от уже изученных.

Поиск новых АМП представляет интерес и с практической точки зрения, поскольку АМП животного происхождения могут послужить химическими матрицами новых антимикробных препаратов. Появление многочисленных микробных штаммов устойчивых к классическим антибиотикам заставляет искать новые классы антимикробных агентов. Широкий спектр антимикробной активности, которая сохраняется и при повышенном содержании в среде NaCl, низкая цитотоксичность в отношении клеток макроорганизма, небольшой размер молекул и легкость синтеза делает 0-дефенсины привлекательными объектами в этом смысле. Специальный интерес представляют антивирусные свойства 0-дефенсинов. Обладая способностью связывать гликопротеины вирусных оболочек 0-дефенсины in vitro предотвращают заражение клеток вирусами гриппа, герпеса, иммунодефицита человека. В настоящий момент активно и всесторонне изучаются антивирусные свойства ретроциклинов, химически синтезированных на основе знания структуры псевдогенов 0-дефенсинов человека, у которого трансляция этих пептидов невозможна из-за наличия стоп-кодона, локализованного в той части мРНК, которая кодирует сигнальную последовательность молекулы-предшественницы (Cole et al., 2004; Leikina et al., 2005).

Поскольку на уровне пептидного продукта 0-дефенсины были найдены пока только у макаки резус, представляет интерес поиск других представителей этого нового и недостаточно изученного подсемейства дефенсинов у родственных видов обезьян. Эти данные могут быть полезны для понимания закономерностей возникновения и формирования разнообразия АМП дефенсинового семейства у приматов, в том числе и у человека.

Цель и задачи исследования

.

Целью настоящей работы были поиск и изучение физико-химических и функциональных свойств антимикробных пептидов из лейкоцитов крови павиана гамадрила. Для достижения этой цели необходимо было решить следующие задачи: 1. Выделить и очистить до гомогенного состояния антимикробные пептиды из лейкоцитов павиана гамадрила;

2.Изучить физико-химические свойства, определить первичную структуру выделенных антимикробных пептидов;

3.Изучить антимикробные свойства выделенных пептидов в отношении тестовых микроорганизмов в зависимости от условий среды;

4.Изучить изменение проницаемости внешней и цитоплазматической мембран грамотрицательной бактерии E. coli под воздействием выделенных антимикробных пептидов;

5.Изучить гемолитическую активность выделенных пептидов в отношении эритроцитов человека.

Научная новизна.

В результате проведенного исследования из лейкоцитов крови павиана гамадрила выделены три новых антимикробных пептида, относящихся к подсемейству а-дефенсинов и названных PHD1−3 (Papio hamadryas defensin). Получены приоритетные данные об антимикробной активности PHD1−3 в отношении грамположительных бактерий Listeria monocytogenes и Staphylococcus aureus, грамотрицательной бактерии Escherichia coli и низшего гриба Candida albicans, сопоставимое с антимикробной активностью а-дефенсина человека HNP1. Наряду с этим, выделены два новых антимикробных пептида, которые по ряду признаков (молекулярная масса, аминокислотный состав, характер антимикробной активности) принадлежат к недавно открытому подсемейству 0-дефенсинов. Определены минимальные ингибирующие концентрации выделенных 9-дефенсиноподобных пептидов павиана гамадрила в отношении 4-х микроорганизмов, в том числе и в зависимости от различных условий среды. Впервые показано, что а-дефенсины и 0-дефенсин 1Ш)-1 макаки резус взаимодействуют с цитоплазматической мембраной грамотрицательной бактерии Е. соН различным образом. Получены данные о гемолитической активности выделенных пептидов. Предложен метод получения 9-дефенсина ИЛТИ макаки резус и 0-дефенсиноподобных пептидов из лейкоцитов крови павиана гамадрила.

Основные положения, выносимые на защиту.

1.Из лейкоцитов крови павиана гамадрила выделено и охарактеризовано по физико-химическим свойствам шесть катионных антимикробных пептидов. На основании результатов определения первичной структуры доказана принадлежность трех пептидов к семейству а-дефенсинов. Структурно-функциональный анализ двух пептидов позволяет отнести их к семейству 0-дефенсинов.

2.а-Дефенсины РНБ1−3 и 9-дефенсино-подобные Пептиды 2054 и 2047 павиана гамадрила являются эффективными антимикробными агентами с широким спектром микробоцидного действия.

3.Антимикробная активность а-дефенсинов РН01−3 и 9-дефенсино-подобных Пептидов 2054 и 2047 павиана гамадрила различается в присутствии повышенных концентраций.

4.Антимикробная активность а-дефенсина РШ)3 и 0-дефенсино-подобного Пептида 2054 павиана гамадрила не изменяется в широком диапазоне рН, но ингибируется при добавлении в среду сыворотки крови.

5.а-Дефенсины и 0-дефенсины взаимодействуют с цитоплазматической мембраной Е. соН различным образом.

6.а-Дефенсин РШ)3 и 9-дефенсино-подобные Пептиды 2054 и 2047 павиана гамадрила не вызывают гемолиза эритроцитов человека при концентрациях, на порядок превышающих минимальные ингибирующие концентрации.

Структура и объем диссертации

Диссертация изложена на 142 страниц машинописного текста и состоит из введения, обзора литературы, описания материалов и методов работы, результатов собственных исследований, их обсуждения, выводов и списка цитируемой литературы из 237 источников, из них 227 — зарубежных авторов. Работа проиллюстрирована 48 рисунками и 7 таблицами.

выводы.

1.Из лейкоцитов крови павиана гамадрила Papio hamadryas выделены, очищены до гомогенного состояния и охарактеризованы по физико-химическим и структурным свойствам три а-дефенсина PHD1, PHD2, PHD3.

2.Пептиды с молекулярными массами 2054 и 2047 павиана гамадрила по совокупности физико-химических и антимикробных свойств можно отнести к семейству 9-дефенсинов.

3.а-Дефенсины PHD1−3 и 9-дефенсино-подобные Пептиды 2054 и 2047 павиана гамадрила проявляют антимикробную активность в отношении грамположительных бактерий L. monocytogenes и S. aureus, грамотрицательной бактерии E. coli и низшего гриба С. albicans в микромолярных концентрациях, причем антимикробная активность а-дефенсинов PHD1−3 и 0-дефенсино-подобных Пептидов 2054 и 2047 различается в присутствии повышенных концентраций NaCl.

4.Антимикробная активность а-дефенсина PHD3, 0-дефенсина RTD-1 макаки резус и 9-дефенсино-подобного Пептида 2054 павиана гамадрила не изменяется в широком диапазоне pH, но ингибируется при добавлении в среду сыворотки крови.

5.а-Дефенсин PHD3 павиана гамадрила, в отличие от 9-дефенсина RTD-1 макаки резус и 9-дефенсино-подобного Пептида 2054 павиана гамадрила, вызывает увеличение проницаемости внешней и цитоплазматической мембран грамотрицательной бактерии E.coli.

6.а-Дефенсин PHD3 и 6-дефенсино-подобные Пептиды 2054 и 2047 павиана гамадрила не вызывают гемолиза эритроцитов при концентрациях, на порядок превышающих их минимальные ингибирующие концентрации.

Показать весь текст

Список литературы

  1. В.Н. Очерки о врожденном иммунитете // СПб. Наука. 2006. Стр. 261.
  2. .А., Джикидзе Э. К., Фридман Э. П. Руководство по медицинской приматологии // М. Медицина. 1987. Стр. 192.
  3. В.Е. Лизосомально-катионный тест // Патол. Физиол. Эксперим. Терапия. 1975. № 3. Стр. 86−88.
  4. В.А., Алешина Г. М., Арцыбашева И. В., Шамова О. В., Кожухарова И. В., Гойло Т. А., Кокряков В. Н. Цитотоксическое и митогенное влияние антимикробных пептидов нейтрофилов на культивируемые клетки // Цитология. 2000. Т. 42. Стр. 228−233.
  5. А.А., Фрейдлин И. С. Клетки иммунной системы. Нейтрофилы. Моноциты/макрофаги // СПб. Наука. 2000. Стр. 231.
  6. P.M., Игнатьева Г. А., Сидорович И. Г. Иммунология // М. Медицина. 2002. Стр. 536.
  7. О.В., Лесникова М. П., Кокряков В. Н. и др. Действие дефенсинов на уровень кортикостерона в крови и иммунный ответ при стрессе // Бюл. Эксперим. Биол. Мед. 1993. Т. 115. Стр. 646−649.
  8. М.Г., Авдеева М. Г., Вакуленко А. Д. Адгезивные межклеточные взаимодействия // Арх. патолог. 1997. Т. 59. Стр. 3−9.
  9. О.Ю. Токсичность кислорода и биологические системы // СПб. Наука. 2000. Стр. 294.
  10. А.А. Основы иммунологии // М. Медицина. 1999. Стр. 608.
  11. Abraham S.N., Arock М. Mast cells and basophils in innate immunity // Sem.Immunol. 1998. Vol. 10. P. 373−381.
  12. Abuja P.M., Zenz A., Trabi M., Craik D.J., Lohner K. The cyclic antimicrobial peptide RTD-1 induces stabilized lipid-peptide domains more efficiently than its open-chain analogue // FEBS Letters. 2004. Vol. 566. P. 301−306.
  13. Agerberth В., Gunne H., Odeberg J., Kogner P., Boman H.G., Gudmundsson GH. FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis // Proc. Natl. Acad. Sci. USA. 1995. Vol. 92. P. 195−199.
  14. Akira S., Taga T., Kishimoto T. Interleukin-6 in biology and medicine // Adv. Immunol. 1993. Vol. 54. P. 1−78.
  15. Ayabe T., Satchell D.P., Wilson C.L., Parks W.C., Selsted M.E., Ouellette A.J. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria // Nat. Immunol. 2000. Vol. 1. P. 113−118.
  16. Bals R., Wang X., Meegalla R.L., Wattler S., Weiner D.J., Nehls M.C., Wilson J.M. Mouse beta-defensin 3 is an inducible antimicrobial peptide expressed in the epithelia of multiple organs // Infect. Immun. 1999a. Vol. 67. P. 3542−3547.
  17. Bals R., Weiner D.J., Meegalla R.L., Wilson J.M. Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J. Clin. Invest. 1999b. Vol. 103. P. 1113−1117.
  18. Becker M.N., Diamond G., Verghese M.W., Randell S.H. CD14-dependent lipopolysaccharidc-induced beta-defensin-2 expression in human tracheobronchial epithelium // J. Biol. Chem. 2000. Vol. 275. P. 29 731−29 736.
  19. Befus A.D., Mowat C., Gilchrist M., Hu J., Solomon S., Bateman A. Neutrophil defensins induce histamine secretion from mast cells: Mechanisms of action // J. Immunol. 1999. Vol. 163. P. 947−953.
  20. Bellm L., Lehrer R.I., Ganz T. Protegrins: New antibiotics of mammalian origin // Expert. Opin. Investig. Drugs. 2000. Vol. 9. P. 1731−1742.
  21. Bevins C.L., Jones D.E., Dutra A., Schaffzin J., Muenke M. Human enteric defensin genes: chromosomal map position and a model for possible evolutionary relationship // Genomics. 1996. Vol. 31. P. 95−106.
  22. Bevins C.L. Antimicrobial peptides as effector molecules of mammalian host defense. // Contrib. Microbiol. 2003. V. 10. P. 106−148.
  23. Blond A., et al. The cyclic structure of microcin J25, a 21-residue peptide antibiotic from Escherichia coli 11 Eur. J. Biochem. 1999. Vol. 259. P. 747−755.
  24. Boman H.G. Peptide antibiotics and their role in innate immunity // Annu. Rev. Immunol. 1995. Vol. 13. P. 61−92.
  25. Borregaard N., Cowland J.B. Granules of the human neutrophilic polymorphonuclear leukocyte //Blood. 1997. Vol. 89. P. 3503−3521.
  26. Buffy J.J., McCormick M.J., Wi S., Waring A., Lehrer R.I., Hong M. Solid-state NMR investigation of selective perturbation of lipid bilayers by cyclic antimicrobial peptide RTD-1 // Biochemistry. 2004. Vol. 43. P. 9800−9812.
  27. Bulet P., Dimarcq J.L., Hetru C. et al. A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution // J. Biol. Chem. 1993. Vol. 268. P. 1 489 314 897.
  28. Bulet P., Stocklin R., Menin L. Anti-microbial peptides: from invertebrates to vertebrates // Immunol. Rev. 2004. Vol. 198. P. 169−184.
  29. Butterworth A.E. The eosinophil and its role in immunity to helminth infection // Curr.Top.Microbiol.Immunol. 1977. Vol. 77. P. 127−168.
  30. Cabiaux V., Agerberth B., Johansson J., Homble F., Goormaghigh E., Ruysschaert J.M. Secondary structure and membrane interaction of PR-39, a Pro+Arg-rich antibacterial peptide // Eur. J. Biochem. 1994. Vol. 224. P. 1019−1027.
  31. Campanelli D., Demetrs P.A., Nathan C. F., Gabay J.E. Azurocidin and a homologus serine protease from neitrophils. Differential antimicrobial and proteolytic properties // J. Clin. Invest. 1990. Vol. 85. P. 904−915.
  32. Ceccarelli A.V., Cole A.M., Park A.K., Tahk S., Yoshioka D., Ganz T. Therapeutic effect of a pig-derived peptide antibiotic on porcine wound infections // Comp. Med. 2001. Vol. 51. P. 75−79.
  33. Charlet M., Chernysh S., Philippe H. et al. // Innate immunity. Isolation of several cysteine rich antimicrobial peptides from the blood of a mollusk Mytilis edulis II J. Biol. Chem. 1996. Vol. 271. P. 21 808−21 813.
  34. Chitnis S.N., Prasad K.S. Seminalplasmin, an antimicrobial protein from bovin seminal plasma, inhibits peptidoglycan synthesis in Escherichia coli II FEMS Microbiol. Lett. 1990. Vol. 60. P. 281−284.
  35. Cole A.M., Ganz T., Liese A.M., Burdick M.D., Liu L., Stricter R.M. Cutting edge: IFN-inducible ELR-CXC chemokines display defensin-like antimicrobial activity // J. Immunol.2001. Vol. 167. P. 623−627.
  36. Cole A.M., Shi J., Ceccarelli A., Kim Y.H., Park A., Ganz T. Inhibition of neutrophil elastase prevents cathelicidin activation and impairs clearance of bacteria from wounds // Blood. 2001. Vol. 97. P. 297−304.
  37. Cole A.M., Hong T., Boo L.M., Nguyen T., Zhao C., Bristol G. Retrocyclin: a primate peptide that protect cells from infection by T- and M-tropic strains of HIV-1 // Proc. Natl. Acad. Sci. USA 2002. Vol. 99. P. 1813−1818.
  38. Cole A.M., Wang W., Waring A.J., Lehrer R.I. Retrocyclins: using past as prologue // Curr. Protein Pept. Sci. 2004. Vol. 5. P. 373−381.
  39. Craik D.J., Daly N.L., Bond T., Waine C. Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif // J. Mol. Biol. 1999. Vol. 294. P. 1327−1336.
  40. Daher K.A., Selsted M.E., Lehrer R.I. Direct inactivation of viruses by human granulocyte defensins // J. Virol. 1986. Vol. 60. P. 1068.
  41. Dathe M., Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells // Biochim. Biophys. Acta. 1999. Vol. 1462. P. 71−87.
  42. Dathe M., Nikolenko H., Meyer J., Beyermann M., Bienert M. Optimization of antimicrobial activity of magainin peptides by modification of charge // FEBS Lett. 2001. Vol. 501. P. 146−150.
  43. Derua R., Gustafson K.R., Pannell L.K. Analysis of the disulfide linkage pattern in circulin A and B, HIV-inhibitory macrocyclic peptides // Bioch.Bioph.Res.Com. 1996. Vol. 228. P. 632−638.
  44. Diamond G., Bevins C.L. P-Defensins. Endogenous antibiotics of the innate host defense response // Clin. Immunol. Immunopathol. 1998. Vol. 88. P. 221−225.
  45. Diamond G., Kaiser V., Rhodes J., Russell J.P., Bevins C.L. Transcriptional regulation of p-defensin gene expression in tracheal epithelial cells // Infect. Immun. 2000. Vol. 68. P.113−119.
  46. Dinarello C.A. Biologic basis for interleukin-1 in disease // Blood. 1996. Vol. 87. P. 2095−2147.
  47. Ellison R.T., Giehl T J. Killing of gram-negative bactera by lactoferrin and lysozyme //J. Clin. Invest. 1991. Vol. 88. P. 1080−1091.
  48. Elsbach P., Weiss J. The bacterial/permeability-increasing protein (BPI), a potent element in host-defense against gram-negative bacteria and lipopolysaccharide // Immunobiology. 1993. Vol. 187. P. 417−429.
  49. Epstein J., Elchbaum Q., Sheriff S., Ezekowitz R.A. The collectins in innate immunity // Curr. Opin. Immunol. 1996. Vol. 8. P. 29−35.
  50. Frank R.W., Gennaro R., Schneider K., Przybylski M., Romeo D. Amino acid sequences of two proline-rich bactenecins. Antimicrobial peptides of bovine neutrophils // J. Biol. Chem. 1990. Vol. 265. P. 18 871−18 874.
  51. Frazer I.F., Koziel H., Ezekowitz R.A. The serum mannose-binding protein and the macrophage mannose receptor are pattern recognition molecules that link innate and adaptive immunity // Semin. Immunol. 1998. Vol. 10. P. 363−372.
  52. Gabay J.E., Almeida R.P. Antibiotic peptides and serine protease homologs in human polymorphonuclear leukocytes: defensins and azurocidin // Curr. Opin. Immunol. 1993. Vol. 5. P. 97−102.
  53. Gallo R. L, Kim K. J, Bernfield M, Kozak C. A, Zanetti M, Merluzzi L, Gennaro R. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse // J. Biol. Chem. 1997. Vol. 272. P. 13 088−13 093.
  54. Gallo R.L., Huttner K.M. Antimicrobial peptides: An emerging concept in cutaneous biology // J. Invest. Dermatol. 1998. Vol. 111. P. 739−743.
  55. Ganz T., Metcalf J.A., Gallin J.I., Boxer L.A., Lehrer R.I. Microbicidal/cytotoxic proteins of neutrophils are deficient in two disorders: Chediak-Higashi syndrome and «specific"granule deficiency // J. Clin. Invest. 1988. Vol. 82. P. 552−556.
  56. Ganz T., Lehrer R.I. Defensins // Curr.Opin.Immunol. 1994. Vol. 6. P. 584−589.
  57. Ganz T., Lehrer R.I. Antimicrobial peptides of leukocytes // Curr. Opin. Hematol. 1997. Vol. 4. P. 53−58.
  58. Ge Y., MacDonald D., Henry M.M., Hait H.I., Nelson K.A., Lipsky B.A., Zasloff M.A., Holroyd K.J. In vitro susceptibility to pexiganan of bacteria isolated from infected diabetic foot ulcers // Diagn. Microbiol. Infect. Dis. 1999. Vol. 35. P. 45−53.
  59. Gennaro R., Dewald B., Horisberger U., Gubler H.U., Baggiolini M. A novel type of cytoplasmic granule in bovine neutrophils // J. Cell Biol. 1983. Vol. 96. P. 1651−1661.
  60. Gennaro R, Skerlavaj B, Romeo D. Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils // Infect. Immun. 1989. Vol. 57. P. 3142−3146.
  61. Ghosh D., Porter E. M, Shen B., Lee S.K., Wilk D.J., Crabb J.W., Drazba J., Yadav S.Y., Ganz T., Bevins C.L. Paneth cell trypsin is the processing enzyme for human defensin-5 // Nat. Immunol. 2002. Vol. 3. P. 583−590.
  62. Gonzales C. et al. Bacteriocin AS-48, a microbial cyclic polypeptide structurally and functionally related to mammalian NK-lysin // Proc. Natl. Acad. Sci. USA. 2000. Vol. 97. P. 11 221−11 228.
  63. Gordon S. Development and distribution of mononuclear phagocytes: relevance to inflammation // Inflammation: basic principles and clinical correlates. Philadelphia. Lippincott Williams & Wikins. 1999. P. 35−49.
  64. Green S.J. Nitric oxide in mucosal immunity // Nat. Med. 1995. Vol. 1. P.515−517.
  65. Greenberg S. Biology of phagocytosis // Inflammation: basic principles and clinical correlates. Philadelphia. Lippincott Williams & Wikins. 1999. P. 681−703.
  66. Boman H.G. Structure of the gene for porcine peptide antibiotic PR-39, a cathelin gene family member: Comparative mapping of the locus for the human peptide antibiotic FALL-39 // Proc. Natl. Acad. Sci. USA. 1995. Vol. 92. P. 7085−7089.
  67. Gudmundsson G., Agerberth B., Odeberg J., Bergman T., Olsson B., Salcedo R. The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes // Eur. J. Biochem. 1996. Vol. 238. P. 325−332.
  68. Hampton M.B., Kettle A.J., Winterbourn C.C. Inside the neutrophil phagosome: oxidant, myeloperoxidase, and bacterial killing // Blood. 1998. Vol.92. P. 3007−3017.
  69. Hancock R.E.W., Falla T., Brown M. Cationic bactericidal peptides // Adv. Microb. Physiol. 1995. Vol. 37. P. 135−175.
  70. Hancock R.E., Lehrer R. Cationic peptides: A new source of antibiotics // Trends Biotechnol. 1998. Vol. 16. P. 82−88.
  71. Harder J., Siebert R., Zhang Y., Matthiesen P., Christophers E., Schlegelberger B., Schroder J.M. Mapping of the gene encoding human beta-defensin-2 (DEFB2) to chromosome region 8p22- p23.1 // Genomics. 1997a. Vol. 46. P. 472−475.
  72. Harder J., Bartels J., Christophers E., Schroder J.M. A peptide antibiotic from human skin //Nature. 1997b. Vol. 387. P. 861.
  73. Harder J., Bartels J., Christophers E., Schroder J.M. Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic // J. Biol. Chem. 2001. Vol. 276. P. 5707−5713.
  74. Harwig S.S.L., Chen N., Park A., Lehrer R. Purification of cysteine-rich bioactive peptides from leucocytes by continuous acid-urea-polyacrilamide gel electrophoresis // Anal. Biochem. 1993. Vol. 208. P. 382−386.
  75. Harwig S.S.L., Tan L., Qu X.D., ChoY., Eisenhauer P.B., Lehrer R.I. Bactericidal properties of murine intestinal phospholipase A2 // J. Clin. Invest. 1995. Vol. 95. P. 603−610.
  76. Harwig S.S.L., Waring A., Yang H.J., Cho Y., Tan L., Lehrer R.I. Intramolecular disulfide bonds enhance the antimicrobial and lytic activities of protegrins at physiological sodium chloride concentrations // Eur. J. Biochem. 1996. Vol. 240. P. 352−357.
  77. Helmerhorst E.J., Breeuwer P., van’t Hof W., et al. The cellular target of histatin 5 on Candida albicans in the energized mitochondrion // J. Biol. Chem. 1999. Vol. 274. P. 72 867 291.
  78. Hill C.P., Yee J., Selsted M.E., Eisenberg D. Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization // Science. 1991. Vol. 251. P. 1481−1485.
  79. Holtje J.V. Lysozyme substrates 11EXS. 1996. Vol. 76. P. 105−110.
  80. Huang H.J., Ross C.R., Blecha F. Chemoattractant properties of PR-39, a neutrophil antibacterial peptide // J. Leukoc. Biol. 1997. Vol. 61. P. 624−629.
  81. Huang H.W. Action of antimicrobial peptides: two-state model // Biochemistry. 2000. Vol. 39. P. 8347−8352.
  82. Huttner K.M., Bevins C.L. Antimicrobial peptides as mediators of epithelial host defense // Pediatr. Res. 1999. Vol. 45. P. 785−794.
  83. Janeway C.A.Jr., Approaching the asymptote? Evolution and revolution in immunology// Cold Spring Harb. Symp. Quant. Biol. 1989. Vol. 54. P. 1−13.
  84. Johnson G.B., Brunn G.J., Piatt J.L. Activation of mammalian Toll-like receptors by endogenous agonists // Crit. Rev. Immunol. 2003. Vol. 23. P. 15−44.
  85. Klebanoff S.J. Oxygen metabolites from phagocytes // Inflammation: basic principles and clinical correlates. Philadelphia. Lippincott Williams & Wikins. 1999. P. 721−769.
  86. Koo S.P., Bater A.S., Yeaman M.R. Diversity in antistaphylococcal mechanisms among membrane-targeting antimicrobial peptides // Infect. Immun. 2001. Vol. 69. P. 49 164 922.
  87. Latal A., Degovics G., Epand R.F., Epand R.M., Lohner K. Structural aspects of the interaction of peptidyl-glycylleucine-carboxyamide, a highly potent antimicrobial peptide from frog skin, with lipids // Eur. J. Biochem. 1997. Vol. 248. P. 938−946.
  88. Lawyer C., Pai S., Watabe M., Borgia P., Mashimo T., Eagleton L., Watabe K.
  89. Antimicrobial activity of a 13 amino acid tryptophan-rich peptide derived from a putative porcine precursor protein of a novel family of antibacterial peptides // FEBS Lett. 1996. Vol. 390. P. 95−98.
  90. Lehrer R., Barton A., Daher K., Harwig S., Ganz T., Selsted M. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity // J. Clin. Invest. 1989. Vol. 84. P. 553−561.
  91. Lehrer R.I., Lichtenstcin A.K., Ganz T. Defensins: Antimicrobial and cytotoxic peptides of mammalian cells//Annu. Rev. Immunol. 1993.Vol. 11.P. 105−128.
  92. Lehrer R.I., Ganz T. Cathelicidins: A family of endogenous antimicrobial peptides // Curr. Opin. Hematol. 2002. Vol. 9. P. 18−22.
  93. Lehrer R.I., Ganz T. Defensins of vertebrate animals // Curr. Opin. Immunol. 2002. Vol. 14. P. 96−102.
  94. Lencer W.I., Cheung G., Strohmeier G.R., Currie M.G., Ouellette A.J., Selsted M.E., Madara J.L. Induction of epithelial chloride secretion by channel-forming cryptins 2 and 3 // Proc. Natl. Acad. Sci. USA. 1997. Vol. 94. P. 8585−8589.
  95. Leonova L., Kokryakov V.N., Aleshina G., Hong T., Nguyen T., Zhao C., Waring A. J., Lehrer R.I. Circular minidefensins and posttranslational generation of molecular diversity // J. Leukoc. Biol. 2001. Vol. 70. P. 461−464.
  96. Li J., Post M., Volk R., Gao Y., Li M., Metais C., Sato K., Tsai J., Aird W., Rosenberg R.D., Hampton T.G., Selike F., Carmeliet P., Simons M. PR39, a peptide regulator of angiogenesis // Nat. Med. 2000. Vol. 6. P. 49−55.
  97. Linzmeier R., Michaelson D., Liu L., Ganz T. The structure of neutrophil defensin genes // FEBS Letter. 1993. Vol. 321. P. 267−273.
  98. Liu L., Zhao C., Heng H.H., Ganz T. The human beta-defensin-1 and alpha-defensins are encoded by adjacent genes: Two peptide families with differing disulfide topology share acommon ancestry // Genomics. 1997. Vol. 43. P. 316−320.
  99. Magor B.G., Magor K.E. Evolution of effectors and receptors of innate immunity // Develop. Compar. Immunology. 2001. Vol. 25. P. 651−682.
  100. Martinez-Bueno M. et al. Determination of the gene sequence and molecular structure of the enterococcal peptide antibiotic AS-48 // J. Bacteriol. 1994. Vol. 176. P. 6334−6339.
  101. Matzinger P. The danger model: a renewed sense of self // Science. 2002. Vol. 296. P. 301−305.
  102. May R.C., Machevsky L.M. Phagocytosis and the actin cytoskeleton // J. Cell Sci. 2001. Vol. 114. P. 1061−1077.
  103. Medzhitov R., Janeway C.A.Jr. Innate immunity // N. Engl. J. Med. 2000. Vol. 343. P. 338−344.
  104. Mahoney M.M., Lee A. Y, Brezinski-Caliguri D.J., Huttner K.M. Molecular analysis of the sheep cathelin family reveals a novel antimicrobial peptide // FEBS Lett. 1995. Vol. 377. P. 519−522.
  105. Mallow E.B., Harris A., Saizman N., Russell J.P., DeBerardinis J.R., Ruchelli E., Bevins C.L. Human enteric defensins: Gene structure and developmental expression // J. Biol. Chem. 1996. Vol. 271. P. 4038−4045.
  106. Matsuzaki K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes // Biochim. Biophys. Acta. 1999. Vol. 1462. P. 1−10.
  107. Mavri J., Vogel H.J. Ion pair formation of phosphorylated amino acids and lysine and arginine side chains: a theoretical study // Proteins. 1996. Vol. 24. P. 495−501.
  108. Medzhitov R., Preston-Hurtburt P., Janeway C.A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity // Nature. 1997. Vol. 388. P. 394−397.
  109. Michaeklson D., Rayner J., Couto M., Ganz T. Cationic defensins arise from charge neutralized propeptides: A mechanism for avoiding leukocyte autotoxicity? // J. Leukoc. Biol. 1992. Vol. 51. P. 634−639.
  110. Miyasaki K.T., Bodeau A.L., Ganz T., Selsted M.E., Lehrer R.I. In vitro sensitivity of oral, gram-negative, facultative bacteria to the bactericidal activity of human neutrophil defensins // Infect. Immun, 1990. Vol. 58. P. 3934−3940.
  111. Morrison G.M., Davidson D.J., Dorin J.R. A novel mouse beta defensin, Defb2, which is upregulated in the airways by lipopolysaccharide // FEBS Lett. 1999. Vol. 442. P. 112 116.
  112. Morrison G., Kilanowski F., Davidson D., Dorin J. Characterization of the mouse beta defensin 1, Defbl, mutant mouse model // Infect. Immun. 2002. Vol. 70. P. 3053−3060.
  113. C., Weiner D.J., Lysenko E., Bals R., Weiser J.N., Wilson J.M. ?-Defensin 1 contributes to pulmonary innate immunity in mice // Infect. Immun. 2002. Vol. 70. P. 30 683 072.
  114. Muller W.A. Migration of leukocytes across the vascular intima. Molecules and mechanisms // Trends Cardiovasc. Med. 1995. Vol. 5. P. 15−20.
  115. Muller W.A. Leukocyte-endothelial cell adhesion molecules in transendothelial migration // Inflammation: basic principles and clinical correlates. Philadelphia. Lippincott Williams & Wikins. 1999. P. 585−593.
  116. Murphy C.J., Foster B.A., Mannis M.J., Selsted M.E., Reid T.W. Defensins are mitogenic for epithelial cells and fibroblasts // J. Cell Physiol. 1993. Vol. 155. P. 408−413.
  117. Nagaoka I., Hirata M., Sugimoto K., Tsutsumi-Ishii Y., Someya A., Saionji K., Igari J. Evaluation of the expression of human CAP 18 gene during neutrophil maturation in the bone marrow//J. Leukoc. Biol. 1998. Vol. 64. P. 845−852.
  118. Nagaoka I, Hirota S, Yomogida S, Ohwada A., Hirata M. Synergistic actions of antibacterial neutrophil defensins and cathelicidins // Inflamm. Res. 2000. Vol. 49. P. 73−79.
  119. Nguyen T.X., Cole A.M., Lehrer R.I. Evolution of primate 0-defensins: a serpentine path to a sweet tooth // Peptides. 2003. Vol. 24. P. 1647−1654.
  120. Okrent D.G., Lichtenstein A.K., Ganz T. Direct cytotoxicity of polymorphonuclear leukocyte granule proteins to human lung-derived cells and endothelial cells // Am. Rev. Respir. Dis. 1990. Vol. 141. P. 179−185.
  121. Olsson I., Odeberg H., Weiss J., Elsbach P. Bactericidal cationic proteins of human granulocytes // Neutral proteases of human polymorphonuclear leukocytes. Eds. K. Havemann, A.Janoff. Baltimor-Munich. 1978. P. 18−32.
  122. Ouellette A.J. Paneth cell antimicrobial peptides and the biology of the mucosal barrier// Am. J. Physiol. 1999. Vol. 277. P. G257-G261.
  123. Pace C.N., Vajdos F., Fee L., Grimsley G., Gray T. How to measure and predict the molar absorption coefficient of a protein // Protein Sci. 1995. Vol. 4. P. 2411−2423.
  124. Panyutich A., Ganz T. Activated a2-macroglobulin is a principal defensin-binding protein // Am. J. Respir. Cell Mol. Biol. 1991. Vol. 5. P. 101−106.
  125. Panyutich A.V., Hiemstra P. S., van Wetering S., Ganz T. Human neutrophil defensin and serpins form complexes and inactivate each other // Am. J. Respir. Cell Mol. Biol. 1995. Vol. 12. P. 351−357.
  126. Panyutich A., Shi J., Boutz P.L., Zhao C., Ganz T. Porcine polymorphonuclear leukocytes generate extracellular microbicidal activity by elastase-mediated activation of secreted proprotegrins // Infect. Immun. 1997. Vol. 65. P. 978−985.
  127. Pardi A., Zhang X.L., Selsted M.E., Skalicky J.J., Yip P.F. NMR studies of defensin antimicrobial peptides. Three-dimensional structures of rabbit NP-2 and human HNP-1 // Biochemistry. 1992. Vol. 31. P. 11 357−11 364.
  128. Park C.B., Kim H.S., Kim S.C. Mechanism of action of antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating he cell membrane and inhibiting cellular functions //Biochem. Biophys. Res. Commun. 1998. Vol. 244. P. 253−257.
  129. Peiser L., Mukhopadhyay S., Gordon S. Scavenger receptors in innate immunity // Curr. Opin. Immunol. 2002. Vol. 14. P. 123−128.
  130. Perregaux D.G., Bhavsar K., Contillo L., Shi J., Gabel C.A. Antimicrobial Peptides initiate IL-1 beta posttranslational processing: A novel role beyond innate immunity // J.1.munol. 2002. Vol. 168. P. 3024−3032.
  131. Poltorak A., He X., Smirnova I. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene// Science. 1998. Vol. 282. P. 2085−2088.
  132. Porter E.M., van Dam E., Valore E.V., Ganz T. Broad-spectrum antimicrobial activity of human intestinal defensin 5 // Infect. Immun. 1997. Vol. 65. P. 2396−2401.
  133. Prodinger W.M., Wurzner R., Erdei A., Dierich M.P. Complement // In: Paul W.E., ed. Fundamental immunology. N.-Y., Lippincott-Raven. 1999. P. 967−996.
  134. Regoli D., Barabe J. Pharmacology of bradykinin and related kinins // Pharmacol. Rev. 1980. Vol. 32. P.l.
  135. Reiter B. The biological significance of lactoferrin // Int. J. Tiss. Reac. 1983. Vol. 1. P. 87−96.
  136. Rice W.G., Ganz T., Kinkade J.M.J., Selsted M.E., Lehrer R.I., Parmley R.T. Defensin-rich dense granules of human neutrophils // Blood. 1987. Vol. 70. P. 757−765.
  137. Ritonja A., Kopitar M., Jerala R., Turk V. Primary structure of a new cysteine proteinase inhibitor from pig leucocytes // FEBS Lett. 1989. Vol. 255. P. 211−214.
  138. Romeo D., Skerlavaj B., Bolognesi M., Gennaro R. Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils // J. Biol. Chem. 1988. Vol. 263. P. 9573−9575.
  139. Rosen H., Klebanoff S.J. Bactericidal activity of a superoxide anion-generating system. A model for the polymorphonuclear leukocytes // J. Exp. Med. 1979. Vol. 149. P. 27.
  140. Rotenberg M.E., Hogan S.P. The eosinophil // Annu.Rev.Immunol. 2006. Vol. 24. P. 147−174.
  141. Salomon R.A., Farias R.N. Microcin 25, a novel antimicrobial peptide produced by Escherichacoli//J. Bacteriol. 1992. Vol. 174. P. 7428−7435.
  142. Salzman N.H., Polin R.A., Harris M.C., Ruchelli E., Hebra A» Zirin-Butler S., Jawad A., Porter E.M., Bevins C.L. Enteric defensin expression in necrotizing enterocolitis // Pediatr. Res. 1998. Vol. 44. P. 20−26.
  143. Schagger H, Von Jagow G: Tricine sodium dodeculsulphate — polyacrilaaamide gel electrophoresis for the separation of proteins in the range from 1−100 kDa // An. Biochem. 1987. Vol. 166. P. 368−379.
  144. Schibli D.J., Hwang P.M., Vogel H.J. Structure of the antimicrobial peptide tritripticin bound to micelles- a distinct membrane-bound peptide fold // Biochemistry. 1999. Vol.38. P. 16 749−16 755.
  145. Schneider J.J., Unholzer A., Schaller M., Schafer-Korting M., Korting H.C. Human defensins // J. Mol. Med. 2005. Vol. 83. P. 587−595.
  146. Schutte B.C., McCray P.B. ?-Defensins in lung host defense // Annu. Rev. Physiol. 2002b. Vol. 64. P. 709−748.
  147. Scocchi M., Skerlavaj B., Romeo D., Gennaro R. Proteolytic cleavage by neutrophil elastase converts inactive storage preforms to antibacterial bactenecins // Eur. J. Biochem. 1992. Vol. 209. P. 589−595.
  148. Scocchi M, Wang S, Zanetti M. Structural organization of the bovine cathelicidin gene family and identification of a novel member // FEBS Lett. 1997. Vol. 417. P. 311−315.
  149. Scocchi M., Wang S., Gennaro R., Zanetti M. Cloning and analysis of a transcript derived from two contiguous genes of the cathelicidin family // Biochim. Biophys. Acta. 1998. Vol. 1398. P. 393−396.
  150. Scocchi M. Novel cathelicidins in horse leukocytes // FEBS Lett. 1999. Vol. 457. P. 459−464.
  151. Scott M.G., Vreugdenhil A.C., Buurman W.A., Hancock R.E., Gold M.R. Cutting edge: Cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein // J. Immunol. 2000a. Vol. 164. P. 549−553.
  152. Segal A. W. How neutrophil kill microbes I I Ann. Rev. Immunol. Vol. 23. P. 197−223.
  153. Selsted M.E., Szklarek D., Ganz T., Lehrer R.I. Activity of rabbit leukocyte peptides against Candida albicans II Infect. Immun. 1985. Vol. 49. P. 202−206.
  154. Selsted M.E., Harwig S.S. Determination of the disulfide array in the human defensin HNP-2. A covalently cyclized peptide // J. Biol. Chem. 1989. Vol. 264. P. 4003−4007.
  155. Selsted M.E., Novotny M.J., Morris W.L., Tang Y.-Q., Smith W., Cullor J.S. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils // J. Biol. Chem. 1992. Vol. 267. P. 4292−4295.
  156. Sepulveda C., Puente J. Natural killer cells and the innate immune system in infectious pathology // Rev. Med. Chil. 2000. Vol. 128. P. 1361−1370.
  157. Shai Y. Mechanism of the binding, insertion and destabilization of phospholipids bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides // Biochem. Biophys. Acta. 1999. Vol. 462. P. 55−70.
  158. Shai Y., Oren Z. From «carpet» mechanism to de novo designed diastereomeric cell-selective antimicrobial peptides // 2001. Peptides. Vol. 22. P. 1629−1641.
  159. Singh P.K., Parsek M.R., Greenberg E.P., Welsh M.J. A component of innate immunity prevents bacterial biofilm development // Nature. 2002. Vol. 417. P. 552−555.
  160. Steiner H., Hultmark D., Engstrom A., Bennich H., Boman H.G. Sequence and specificity of two antibacterial proteins involved in insect immunity // Nature. 1981. Vol. 292. P. 246−248.
  161. Stolzenberg E.D., Anderson G.M., Ackermann M.R., Whitlock R.H., Zasloff M. Epithelial antibiotic induced in states of disease // Proc. Natl. Acad. Sci. USA. 1997. Vol. 94. P. 8686−8690.
  162. Storici P, Scocchi M, Tossi A, Gennaro R, Zanetti M. Chemical synthesis and biological activity of a novel antibacterial peptide deduced from a pig myeloid cDNA // FEBS Lett 1994. Vol. 337. P. 303−307.
  163. Takenchi O., Hoshino K., Kawai T. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components // Immunity. 1999. Vol. 11. P. 443−451.
  164. Tam J.P., Lu Y.A., Yang J.L. Marked increase in membranolytic selectivity of novel cyclic tachyplesins constrained with an antiparallel two-p- strand cystine knot framework // Biochem. Biophys. Res. Commun. 2000a. Vol. 267. P. 783−790.
  165. Tam J.P., Wu C., Yang J.L. Membranolytic selectivity of cystine-stabilized cyclic protegrins // Eur. J. Biochem. 2000b. Vol. 267. P. 3289−3300.
  166. Tanabe H., Yuan J., Zaragoza M.M., Dandekar S., Henschen-Edman A., Selsted M.E., Ouellette A.J. Paneth cell a-defensins from rhesus macaque small intestine // Infect. Immun. 2004. Vol. 72. P. 1470−1478.
  167. Tang Y.Q., Selsted M.E. Characterization of the disulfide motif in BNBD-12, an antimicrobial beta-defensin peptide from bovine neutrophils // J. Biol. Chem. 1993. Vol. 268. P. 6649−6653.
  168. Tang Y.Q., Yuan J., Osapay G., Osapay K., Tran D., Miller C.J., Ouellette A.J., Selsted M.E. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins // Science. 1999a. Vol. 286. P. 498−502.
  169. Tang Y.Q., Yuan J., Miller C.J., Selsted M.E. Isolation, characterization, cDNA cloning, and antimicrobial properties of two distinct subfamilies of a-defensins from rhesus macaque leukocytes // Infect. Immun. 1999b. Vol. 67. P. 6139−6144.
  170. Theilgaard-Monch K., Porse B.T., Borregaard N. Sistems biology of neutrophil differentiation and immune response // Curr. Opin. Immunol. 2006. Vol. 18. P. 54−60.
  171. Thomas C.A., Li Y., Kodama T., Suzuki H., Silverstein S.C., El Khoury J. Protection from lethal gram-positive infection by macrophage scavenger receptor-dependent phagocytosis // J. Exp. Med. 2000 Vol. 191. P. 147−156.
  172. Trabi M., Schirra H.J., Craik D.J. Three-dimensional structure of RTD-1, a cyclic antimicrobial defensin from rhesus macaque leukocytes // Biochemistry. 2001. Vol. 40. P. 42 114 221.
  173. Tran D., Tran P.A., Tang Y.Q., Yuan J., Cole T., Selsted M.E. Homodimeric 0-defensins from rhesus macaque leukocytes // J. Biol. Chem. 2002. Vol. 277. P. 3079−3084.
  174. Travis S.M., Anderson N.N., Forsyth W.R., Espiritu C., Conway B.D., Greenberg E.P., McCray P.B.J., Lehrer R.I., Welsh M.J., Tack B.F. Bactericidal activity of mammalian cathelicidin-derived peptides//Infect. Immun. 2000. Vol. 68. P. 2748−2755.
  175. Tsutsumi-Ishii Y., Hasebe T., Nagaoka I. Role of CCAAT/enhancer-binding protein site in transcription of human neutrophil peptide-1 and -3 defensin genes // J. Immunol. 2000. Vol. 164. P. 3264−3273.
  176. Uematsu N., Matsuzaki K. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study // Biophys. J. 2000. Vol. 70. P. 2075−2083.
  177. Valore E.V., Ganz T. Posttranslational processing of defensins in immature human myeloid cells // Blood. 1992. Vol. 79. P. 1538−1544.
  178. Varkey J., Nagaraj R. Antibacterial activity of human neutrophil defensin HNP-1 analogs without cysteines //Antimicrob. Agents Chemother. 2005. Vol. 49. P. 4561−4566.
  179. Vergne I., Constant P., Laneelle G. Phagosomal pH determination by dual fluorescence flow cytometry // Anal. Biochem. 1998. Vol. 255. P. 127−132.
  180. Vieira O.V., Botelho R.J., Grinstein S. Phagosome maturation: aging gracefully // BiochemJ. 2002. Vol. 366. P. 689−704.
  181. Vunnam S., Juwadi P., Merrifield R.B. Synthesis and antibacterial action of cecropin and proline-arginine-rich peptides from pig intestine // J. Pept. Res. 1997. Vol. 49. P. 59−66.
  182. Wade D., Boman A., Wahlin B., Drain C.M., Andreu D., Boman H.G., Merrifield R.B. All-D amino acid-containing channel-forming antibiotic peptides // Proc. Natl. Acad. Sci. USA. 1990. Vol. 87. P. 4761−4765.
  183. Wang W., Cole A.M., Hong T., Waring A.J., Lehrer R.I. Retricyclin, an antiretroviral theta-defensin is a lectin // J. Immunol. 2003. Vol. 170. P. 4708−4716.
  184. Wang W., Owen S.M., Rudolph D.L., Cole A.M., Hong T., Waring A.J., Lai R.B., Lehrer R.I. Activity of a- and 0-defensins against primary isolates of HIV-1 // J. Immunol. 2004. Vol. 173. P. 515−520.
  185. Weiss J., Elbach P., Olsson I., Odeberg H. Purification and characterization of a potent bactericidal and membrane active protein from granules of human polymorphonuclear leukocytes // J. Biol. Chem. 1978. Vol. 253. P. 2664−2672.
  186. Weiss T.M., Yang L., Ding L., Waring A.J., Lehrer R.I., Huang H.W. Biochemistry. 2002. Vol. 41. P. 10 070−10 076.
  187. White S. H, Wimley W. C, Selsted M.E. Structure, function, and membrane integration of defensins // Curr. Opin. Struct. Biol. 1995. Vol. 5. P. 521−527.
  188. Wolf A. Critical reappraisal of Waddell’s technique for ultraviolet spectrophotometric protein estimation // Anal. Biochem. 1983. Vol. 129. P. 145−155.
  189. Wright S.D., Tobias P. S., Ulevitch R.J., Ramos R.A. Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages // J. Exp. Med. 1989. Vol. 179. P. 1231−1241.
  190. Wu M., Maier E., Benz R., Hancock R. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli // Biochemistry. 1999. Vol. 38. P. 7235−7242.
  191. Yamaguchi S., Hong T., Waring A., Lehrer R.I., Hong M. Solid-state NMRinvestigations of peptide-lipid interaction and orientation of a P-sheet antimicrobial peptide, protegrin// Biochemistry. 2002. Vol. 41. P. 9852−9862.
  192. Yamauchi K., Tomita M., Giehl T.J., Ellison R.T. Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment // Infect. Immun. 1993. Vol.61. P. 719−728.
  193. Yan H., Hancock R.E. Synergistic interactions between mammalian antimicrobial defense peptides // Antimicrob. Agents Chemother. 2001. Vol. 45. P. 1558−1560.
  194. Yang D., Chen Q., Chertov O., Oppenheim J.J. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells // J. Leukoc. Biol. 2000. Vol. 68. P. 9−14.
  195. Yang D., Biragyn.A., Kwak L.W., Oppenheim J.J. Mammalian defensins in immunity: More than just microbicidal // Trends Immunol. 2002. Vol. 23. P. 291−296.
  196. Yang L., Weiss T.M., Lehrer R.I., Huang H.W. Crystallization of antimicrobial pores in membranes: magainin and protegrin // Biophys. J. 2000. Vol. 79. P. 2002−2009.
  197. Yang L., Harroum T.A., Weiss T.M., Ding I., Huang H.W. Barrel-stave modele or toroidal model? A case study on melittin pores // Biophys. J. 2001. Vol. 81. P. 1475−1485.
  198. Yasin B., Harwig S.S.L., Lehrer R.I., Wagar E.A. Susceptibility of Chlamydia trachomatis to protegrins and defensins // Infect.Immun. 1996. Vol. 64. P. 709−713.
  199. Yasin B., Wang W., Pang M., Cheshenko N., Hong T., 2 Waring A.J., Herold B.C., Wagar E.A., Lehrer R.I. 0-Defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry//J. Virol. 2004. Vol. 78. P. 5147−5156.
  200. Yeaman M.R., Yount N.Y. Mechanisms of antimicrobial peptide action and resistance // Pharm. rev. 2003. Vol. 55. P. 27−55.
  201. Yu Q., Lehrer R.I., Tam J.P. Engineered salt-insensitive a-defensins with end-to-endcircularized structures // J. Biol. Chem. 2000. Vol. 275. P. 3943−3949.
  202. Zanetti M, Litteri L., Gennaro R., Horstmann H., Romeo D. Bactenecins, defense polypeptides of bovine neutrophils, are generated from precursor molecules stored in the large granules // J. Cell Biol. 1990. Vol. 111. P. 1363−1371.
  203. Zanetti M., Gennaro R., Romeo D. Cathelicidins: A novel protein family with a common proregion and a variable C-terminal antimicrobial domain // FEBS Lett. 1995. Vol. 374. P. 1−5.
  204. Zasloff M. Reconstructing one of nature’s designs // Trends Pharmacol. Sci. 2000. Vol. 21. P. 236−238.
  205. Zasloff M. Antimicrobial peptides of multicellular organisms // Nature. 2002. Vol. 415. P. 389−395.
  206. Zeya H.I., Spitznagel J.K. Antibacterial and enzymic basic proteins from leukocyte lysosomes: Separation and identification// Science. 1963. Vol. 142. P. 1085−1087.
  207. Zhang L" Scott M.G., Yan H., Mayer L.D., Hancock R.E.W. Interaction of polyphemusin 1 and structural analogs with bacterial membranes, lipopolysaccharide, and lipid monolayers // Biochemistiy. 2000. Vol. 39. P. 14 504−14 514.
  208. Zimmermann G.R., Legault P., Selsted M.E., Pardi A. Solution structure of bovine neutrophil beta-defensin-12: The peptide fold of the beta-defensins is identical to that of the classical defensins // Biochemistry. 1995. Vol. 34. P. 13 663−13 671.
  209. Zhu Q., Singh A.V., Bateman A., Esch F., Solomon S. The corticostatic (anti-ACTH) and cytotoxic activity of peptides isolated from fetal, adult and tumor-bearing lung // J. Steroid Biochem. 1987. Vol. 27. P. 1017−1022.
Заполнить форму текущей работой