Помощь в написании студенческих работ
Антистрессовый сервис

Неравновесные процессы при интенсивном нагреве плазмы с кулоновскими соударениями

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Первые два раздела главы посвящены вопросам моделирования кулоновских соударений и взаимодействия электронной компоненты с высокочастотным полем в условиях циклотронного резонанса. Путем решения квазилинейного кинетического уравнения с учетом кулоновских соударений проведено численное моделирование квазилинейной модификации электронной функции распределения на выделенной магнитной поверхности… Читать ещё >

Неравновесные процессы при интенсивном нагреве плазмы с кулоновскими соударениями (реферат, курсовая, диплом, контрольная)

Содержание

  • I. Кинетическое описание плазмы в магнитных ловушках
    • 1. 1. Движение отдельных заряженных частиц в магнитных ловушках
    • 1. 2. Иерархия кинетических уравнений для функции распределения
    • 1. 3. Системы координат в пространстве импульсов
    • 1. 4. Кулоновские соударения
  • Изотропное распределение фоновых частиц
  • Линеаризованный оператор соударений
  • Баунс-усредненный оператор соударений
  • Физические аспекты кулоновского взаимодействия
    • 1. 5. Оценка характерных времен
  • II. Электронно-циклотронное взаимодействие при квазипоперечном распространении излучения в тороидальной плазме
    • 2. 1. Введение
    • 2. 2. Квазилинейная диффузия в тороидальной плазме
    • 2. 3. Моделирование кулоновских соударений при описании нагрева плазмы
  • Постановка задачи
  • Формирование квазилинейного возмущения
  • Квазистационарный нагрев электронной компоненты
  • Динамика температуры для узкого резонансного слоя
    • 2. 4. Самосогласованная модель ЭЦ нагрева плазмы в тороидальной ловушке
  • Основные уравнения и параметры задачи
  • Упрощенное описание в случае узкого спектра излучения
  • Результаты расчетов
    • 2. 5. Квазилинейное возмущение спектра излучения плазмы в окрестности частоты ЭЦ нагрева
  • Качественный анализ
  • Расчет ЭЦ излучения для круглого токамака
  • Расчет ЭЦ излучения для стелларатора V7-AS
    • 2. 6. Генерация безындукционного тока при квазипоперечном вводе ЭЦ излучения
  • Основные уравнения.'
  • Генерация тока в однородной плазме
  • Оценка тока в. тороидальной системе
  • Влияние постоянного электрического поля

3.2 Динамика магнитного поля в солнечной короне.106.

3.3 Динамика фоновой плазмы.109.

3.4 Распределение энергичных электронов.113.

Условия «убегания"электронов.114.

Решение кинетического уравнения для функции распределения энергичных электронов.. 116.

3.5 Предельный запас энергии горячих электронов.121.

Развитие ЭЦ неустойчивостей.. 121.

Потери на синхротронное излучение.124.

3.6 Заключение к главе III.124.

IV Ионно-циклотронные неустойчивости термоядерной плазмы при нагреве методом инжекции нейтральных пучков 126.

4.1 Введение.126.

4.2 Экспериментальное исследование на стеллараторе W7-AS.127.

Экспериментальные условия.128.

Основные экспериментальные результаты .130.

4.3 Моделирование функции распределения быстрых ионов при нейтральной инжекции.136.

4.4 Нижнегибридная неустойчивость в условиях двойного резонанса. 139.

4.5 Неустойчивость ионных бернштейновских волн.146.

4.6 Заключение к главе IV.149.

Заключение

151.

Литература

153.

Особенностью нагрева высокотемпературной плазмы является существенно неоднородное распределение вкладываемой мощности по фазовому пространству частиц. Например, при нагреве плазмы за счет резонансного поглощения высокочастотного излучения энергия вкладывается в выделенную в пространстве импульсов группу частиц, удовлетворяющих резонансному условиюпри нагреве с помощью инжекции пучков быстрых атомов энергия передается в плазму через возбуждение и последующую релаксацию ионных пучковпри магнитном сжатии плазмы эффективность ускорения отдельных частиц зависит от их импульса и т. п. Таким образом, под действием того или иного механизма энерговклада при нагреве плазмы создаются условия для формирования неравновесных функций распределений заряженных частиц. С другой стороны, кулоновское взаимодействие между частицами плазмы приводит к возникновению «термодинамических сил», стремящихся восстановить равновесное распределение. Кроме того, в случае селективного энерговклада в выделенную группу частиц, соударения приводят к распространению возмущений функции распределения из локализованной области на все пространство импульсов, что в конечном итоге проявляется как нагрев основной компоненты плазмы.

Исследование неравновесных процессов, протекающих при интенсивном нагреве плазмы, является одной из фундаментальных задач физики плазмы. Эта задача имеет не только очевидное общефизическое значение, но и представляет значительный практический интерес, в первую очередь, в приложении к современным и планируемым установкам управляемого термоядерного синтеза (УТС) с магнитным удержанием плазмы. Условия, при которых нагрев сопровождается формированием неравновесных распределений частиц, сравнительно легко реализуются и в космической плазме — в атмосферах звезд, в том числе, в солнечной короне, и в радиационных поясах планет — здесь моделирование неравновесных процессов играет важную роль при интерпретации результатов наблюдений таких объектов.

Теоретический аппарат для исследования явлений, связанных с формированием неравновесных функций распределений в результате совместного действия кулонов-ских соударений в высокоионизованной плазме и того или иного механизма нагрева частиц, хорошо разработан, см., например, [1−8]. В большинстве случаев эволюция функции распределения может быть описана кинетическим уравнением, включающим оператор кулоновских соударений типа Фоккера-Планка и операторы, описывающие взаимодействие с внешними полями, источники и стоки частиц и т. п. Тем не менее, благодаря богатству физических процессов, укладывающихся в приведенную схему, существует большое число актуальных физических приложений, теоретическое исследование которых далеко от завершения. Целый ряд задач подобного рода связан с описанием интенсивного нагрева плазмы, удерживаемой в тороидальных магнитных ловушках УТС (токамаках и стеллараторах). К таким задачам относится, прежде всего, «самосогласованное» определение функции распределения одновременно с профилем энерговклада с учетом пространственного переноса вещества и/илп излучения, формирующихся при том или ином способе нагрева, используемом в эксперименте. Другую группу составляют задачи, направленные на развитие методов диагностики неравновесных распределений электронов и ионов в термоядерной плазме. И, наконец, весьма продуктивным и интересным в настоящее время является перенос идей и подходов, разработанных при исследовании лабораторной высокотемпературной плазмы, в смежные области физики, в частности, в исследования физики Солнца.

Данная диссертационная работа посвящена развитию кинетической теории неравновесной плазмы в обозначенных выше трех направлениях. С единых позиций в диссертации рассмотрены следующие проблемы:

• задача о взаимодействии мощного высокочастотного поля с плазмой в условиях электронного циклотронного (ЭЦ) резонанса при квазипоперечном распространении излучения в тороидальной ловушке;

• задача об ускорении электронов на подготовительной стадии солнечной вспышки при адиабатическом магнитном сжатии плазмы в процессе крупномасштабной топологической перестройки магнитного поля в солнечной короне;

• задача о формировании и устойчивости функции распределения быстрых ионов при нагреве термоядерной плазмы путем инжекции нейтральных пучков.

Основное внимание уделяется эффектам, обусловленным совместным влиянием внешнего воздействия на систему и кулоновского взаимодействия частиц плазмы, и явлениям, являющихся следствием неравновесных распределений и способных служить косвенной диагностикой таких распределений — генерации нетеплового собственного излучения и некоторых типов микронеустойчивостей плазмы.

В первой главе диссертации излагается общий подход к построению кинетической теории высокотемпературной плазмы, на который опирается исследование конкретных задач в последующих главах. Используется ставшая уже классической схема усреднения кинетического уравнения Больцмана для функции распределения частиц по быстрым движениям отдельной заряженной частицы в неоднородном магнитном поле без учета кулоновскпх соударений [2,9−13]. В результате получено так называемое баунс-усредненное кинетическое уравнение, зависящее только от двух проекций импульса и времени вместо шести динамических переменных и времени в исходном уравнении Больцмана. Это уравнение используется в остальных частях диссертации для описания неравновесных процессов с учетом кулоновского взаимодействия между заряженными частицами. Здесь же обсуждаются физические особенности и детали математического описания кулоновского взаимодействия и сформулирована единая для всей диссертации система обозначений.

Во второй главе диссертации приведен систематический анализ задачи об ЭЦ взаимодействии при квазипоперечном распространении излучения в тороидальной плазме с учетом модификации функции распределения электронов в квазилинейном приближении. Здесь под квазипоперечным направлением понимается такое направление распространения излучения, при котором доплеровский сдвиг частоты в условии циклотронного резонанса либо мал, либо одного порядка по сравнению с релятивистской поправкой к частоте циклотронного вращения (тепловых) электронов. Исследованы два наиболее важных с практической точки зрения случая, при которых реализуется максимальное при квазипоперечном распространении излучения циклотронное поглощение — взаимодействие с обыкновенной волной на первой циклотронной гармонике и с необыкновенной волной на второй гармонике. В рамках единой модели рассмотрены ЭЦ нагрев плазмы, генерация тока в плазме и модификация спектров собственного излучения плазмы, к которой может приводить возмущение функции распределения электронов при взаимодействии с интенсивным СВЧ полем. Эволюция функции распределения электронов на системе магнитных поверхностей моделируется в рамках кинетического уравнения типа Фоккера-Планка, включающего два основных члена — оператор кулоновских соударений и оператор квазилинейной диффузии. Интенсивность СВЧ поля в заданной точке определяется поглощением излучения в предшествующей вдоль геометрооптической трассы пучка области. Коэффициент поглощения и профиль энерговклада, в свою очередь, модифицируются в результате квазилинейной релаксации функции распределения электронов. В такой постановке, решения кинетического уравнения, соответствующие различным магнитным поверхностям, оказываются связанными общим уравнением переноса интенсивности греющего излучения вдоль трассы его распространения.

Первые два раздела главы посвящены вопросам моделирования кулоновских соударений и взаимодействия электронной компоненты с высокочастотным полем в условиях циклотронного резонанса. Путем решения квазилинейного кинетического уравнения с учетом кулоновских соударений проведено численное моделирование квазилинейной модификации электронной функции распределения на выделенной магнитной поверхности в условиях заданного спектра греющего излучения. Предложены две упрощенные модели интеграла соударений, позволяющие описывать нагрев электронной компоненты под действием СВЧ излучения. Первый оператор получен путем модернизации линейного интеграла соударений, в который введена параметрическая зависимость от времени температуры фонового максвелловского распределения. Показано, что если определять динамику температуры фонового распределения электронов, исходя из уравнения баланса энергии, определяемого величиной поглощаемой СВЧ мощности в условиях квазилинейной модификации функции распределения, то получаемый результат непротиворечивым образом описывает квази-стацпонарный нагрев основной электронной компоненты. Этот же результат более строго подтвержден при сопоставлении с решениями, полученными с использованием второго модельного интеграла кулоновских соударений — нелинейного оператора, получающегося усреднением распределения рассевающих электронов по питч-углам. Опираясь на нестационарный линейный интеграл соударений, получены аналитические решения, описывающие квазистационарный нагрев электронной компоненты с учетом квазилинейной деградации поглощаемой СВЧ мощности.

В следующих разделах рассматривается пространственно неоднородная задача о квазилинейной эволюции функции распределения электронов на системе магнитных поверхностей в тороидальной магнитной ловушке. Модификация электронной функции распределения в условиях циклотронного поглощения СВЧ поля в тороидальной плазме наиболее ярко выражена в экспериментах по ЭЦ генерации тока при внутреннем или наклонном по отношению к тороидальному магнитному полю вводе внешнего излучения. При этом энергия вкладывается в энергичные надтепловые электроны. В случае квазппоперечного ввода внешнего излучения со стороны слабого магнитного поля, обычно используемого для ЭЦ нагрева плазмы, для оптически толстого плазменного шнура основная доля поглощаемой СВЧ мощности приходится на низкоэнергичные электроны, для которых отклонение функции распределения от равновесной подавлено в результате эффективных кулоновских соударений. Поэтому, в условиях современного эксперимента с использованием ЭЦ нагрева плазмы возмущение функции распределения резонансных электронов приводит лишь к небольшому смещению и расширению области поглощения мощности, не оказывая заметного влияния на формирование глобальных профилей концентрации и температуры. Тем не менее, подобные эффекты могут оказаться принципиальными при использовании дополнительного ЭЦ нагрева с целью стабилизации МГД неустойчи-востей плазменного шнура, когда энерговклад должен быть локализован с высокой точностью. Кроме того, самосогласованный учет динамики функции распределения и греющего излучения является принципиальным для расчета собственного ЭЦ излучения плазмы, которое в случае оптически толстого плазменного слоя чувствительно к пространственной структуре распределения резонансных электронов.

Модификация спектров собственного ЭЦ излучения плазмы в тороидальной магнитной ловушке, к которой может приводить возмущение функции распределения электронов при взаимодействии с интенсивным внешним ЭЦ излучением, может возникать вследствие трех основных эффектов: (1) формирования энергичного «хвоста» функции распределения, (и) формирования квазилинейного плато в резонансной области в пространстве импульсов п (ш) образования резких градиентов функции распределения на границах резонансной области. Во второй главе диссертации подробно рассмотрен эффект (и), наиболее ярко проявляющийся при ЭЦ нагреве плазмы, когда вводимая СВЧ мощность в основном вкладывается в нпзкоэнергачные частицы в тепловой области энергий и доля энергичных надтепловых электронов мала. Формирование плато приводит к подавлению резонансного поглощения в окрестности частоты нагрева. Из-за появления своеобразного окна прозрачности в спектре поглощения основной компоненты плазмы уровень собственного излучения плазменного шнура в соответствующем частотном интервале повышается по сравнению с тепловым. Важно отметить, что это увеличение проявляется и в том случае, если общее число резонансных электронов возмущается слабо, т. е. независимо от наличия в плазме энергичных частиц. В диссертации показано, что рассматриваемый эффект увеличения уровня циклотронного излучения в окрестности частоты нагрева может быть заметным, если оптическая толщина плазмы достаточно велика, что открывает возможность для диагностики слабо выраженных квазилинейных возмущений электронной функции распределения в тепловой области энергий, характерных для эксперимента с использованием ЭЦ нагрева плазмы. В частности, с помощью модифицированного с учетом квазилинейного возмущения функции распределения электронов уравнения переноса собственного излучения плазмы получены аналитические оценки для возмущений спектров ЭЦ излучения в двух характерных случаях: бесстолкно-вительной функции распределения и функции распределения, возмущенной в узкой резонансной области в пространстве импульсов. В отличие от спектров излучения энергичных электронов, для которых существует большое количество тестовых аналитических решений для модельных «хвостов» функций распределения, аналитические решения для случая квазилинейного возмущения основного тела функции распределения получены, насколько известно автору, впервые. Результаты качественного анализа использованы для интерпретации численных расчетов, проведенных для круглого токамака масштаба Т-10 и стелларатора «У7-А3 в случае ввода греющего излучения со стороны слабого магнитного поля.

Интересными особенностями обладает механизм генерации тока увлечения при квазипоперечном вводе ЭЦ излучения. Как уже отмечалось, при квазипоперечном вводе со стороны слабого магнитного поля основная доля поглощаемой СВЧ мощности приходится на нпзкоэнергачные электроны из тепловой области энергий. Эти электроны подвержены интенсивным кулоновскпм соударениям, поэтому циклотронное взаимодействие с СВЧ полем приводит к существенно меньшей анизотропии функции распределения электронов по сравнению с «классическими» схемами ЭЦ генерации тока, когда энергия вкладывается преимущественно в надтепловые электроны [14]. Однако из-за большого удельного числа тепловых электронов даже слабая анизотропия их функции распределении может оказаться достаточной для тока, сопоставимого с током надтепловых частиц. Таким образом, квазипоперечный ввод излучения представляется весьма интересным в задачах, когда необходимо получить большую плотность тороидального тока в некотором выделенном сечении плазменного шнура при заданной СВЧ мощности, а эффективность генерации полного тока не является параметром оптимизации. В диссертационной работе обращается внимание на неоднозначность направления тороидального тока, связанную с геометрией резонансной области при квазипоперечном вводе, когда условие циклотронного резонанса определяется одновременно релятивистской зависимостью гпрочастоты электрона от его энергии и доплеровским сдвигом частоты поля (который, собственно, и отвечает за асимметрию энерговклада в пространстве импульсов). В этом специфическом случае эффективно прогреваются как частицы, имеющие компоненту скорости, сонаправленную с направлением распространения СВЧ излучения, так и частицы, двигающиеся навстречу. Это может приводить к снижению эффективности генерации тока или, даже, к смене направления тока относительно направления ввода СВЧ излучения, что, в некотором смысле, дополняет известные тороидальные механизмы генеращш бут-стреп тока и тока Окавы [14]. В диссертации получено общее выражение для плотности ЭЦ тока в случае квазипоперечного распространения излучения с заданным спектром и проведена оценка эффективности генерации полного тока в тороидальной системе, показывающая, что эффективность генеращш в случае квазипоперечного ввода излучения может быть сопоставима со стандартной эффективностью, определенной в работах Фиша и Бузера для «наклонных» схем генерации ЭЦ тока. Проведен анализ влияния продольного электрического поля на ВЧ генерацию тока, из которого следует, что для типичных параметров эксперимента на стационарной фазе разряда электрическое поле приводит в основном к аддитивному вкладу в ток, описываемому спитцеровской проводимостью.

В третьей главе диссертационной работы предложен простой, а потому достаточно универсальный механизм ускорения частиц на подготовительной стадии солнечной вспышки, основанный на адиабатическом магнитном сжатии плазмы. Магнитное сжатие вполне типично для активных областей, в которых происходит сравнительно быстрая перестройка крупномасштабных магнитных полей, обусловленная всплыванием новых магнитных трубок и процессами пересоединения магнитных силовых линий [15]. Ускорение электронов связано с так называемым явлением «убегания» заряженных частиц в индукционном электрическом поле [16,17]. Этот процесс по своей природе аналогичен убеганию в статическом электрическом поле — из-за резкой зависимости от энергии кулоновское взаимодействие быстрых частиц оказывается слабым, поэтому даже относительно небольшое электрическое поле приводит к сильному искажению функции распределения электронов в области высоких энергий и, в частности, к образованию потока (в пространстве импульсов) убегающих электронов, для которых потери при столкновении меньше набора энергии в электрическом поле на длине свободного пробега [13,18−24]. При высокой по сравнению с темпом сжатия частоте электрон-электронных и электрон-ионных кулоновских соударений в условиях солнечной короны в режим ускорения уходит лишь малая доля частиц с достаточно большой исходной энергией. Процесс «убегания» является сильно неравновесным и требует детального расчета функции распределения электронов по импульсам.

Задача о генерации ускоренных электронов при сжатии заполненной плазмой магнитной силовой трубки разбивается на две отдельные подзадачи: динамика основной плазмы моделируется в рамках магаитогидродинамического приближения, а для определения распределения эффективно ускоряемых энергичных электронов по импульсам решается кинетическое уравнение. Данный подход позволяет наиболее простым и естественным образом учесть специфические факторы, действующие на каждую из групп частиц.

В результате моделирования найден режим адиабатического магнитного сжатия плазмы, при котором ускорение энергичных электронов сопровождается охлаждением основной компоненты плазмы за счет радиационных потерь. Показано, что для этого режима возможно значительное накопление энергии в «хвосте» убегающих электронов до момента включения ограничивающей накопление циклотронной неустойчивости на свистовых модах. Это позволяет рассматривать магнитное сжатие в качестве возможного источника энергичных частиц в корональных петлях на подготовительной фазе вспышки.

Четвертая глава диссертации посвящена экспериментальному и теоретическому исследованию мелкомасштабных неустойчивостей ионной функции распределения, формирующихся при пнжекцпи нейтральных пучков на стеллараторе W7-AS (Wendelstein 7-AS, Гархинг, Германия). Специфическая особенность измерений спектров коллективного рассеяния заключается в том, что данный метод позволяет регистрировать мелкомасштабные флуктуации электронной плотности непосредственно внутри плазменного объема (в том числе и моды, запертые внутри плазмы) с фиксированным волновым вектором, определенным геометрией рассеяния и частотой зондирующего излучения. В отличие от предыдущих исследований с использованием указанных диагностик на W7-AS [25−27], особое внимание было уделено исследованию цнжекции мощных пучков нейтральных атомов, используемых для нагрева плазмы. Для объяснения результатов измерений было проведено моделирование функции распределения быстрых ионов, формирующейся в условиях нейтральной инжекции, с учетом кулоновского взаимодействия с частицами основной плазмы и дрейфовых потерь в неоднородном магнитном поле стелларатора. Полученные распределения исследованы на устойчивость относительно возбуждения электростатических плазменных мод в окрестности ионных циклотронных гармоник. Проанализированы два случая, соответствующие наблюдаемым спектрам турбулентности плазмы: гидродинамическая неустойчивость в условиях двойного резонанса, когда нижнегибридная частота совпадает с высокой ионной циклотронной гармоникой, и кинетическая неустойчивость ионных бернпггейновских мод на более низких гармониках. Показано, что возбуждением указанных неустойчивостей могут быть объяснены наблюдаемые в эксперименте повышенные уровни рассеяния и циклотронного излучения.

В заключении к сформулированы основные результаты диссертации.

Результаты диссертационной работы изложены в научных статьях в отечественных и зарубежных журналах и сборниках трудов [28−43]. Всего по теме диссертации автором опубликовано 6 статей в реферируемых журналах (Астрономический журнал, Физика плазмы, Известия вузов. Радиофизика, Plasma Phys. Control. Fusion), 2 препринта, 5 статей в сборниках трудов международных конференций и 8 тезисов докладов. Основные результаты работы докладывались и обсуждались на семинарах Института прикладной физики РАН и Института физики плазмы общества Макса Планка (MPI fur Plasmaphysik), на конкурсах научных работ, на международных и общероссийских конференциях и совещаниях: 10th Joint Russian-German Workshop on ECRH and Gyrotrons (N. Novgorod, June 16−22, 1998), VII Симпозиум по солнечно-земной физике России и стран СНГ (Москва, ИЗМИРАН, 15−18 декабря 1998), XXVI Звенигородская конференция по физике плазмы и управляемому термоядерному синтезу (Звенигород, 5−9 апреля, 1999), IV Нижегородская сессия молодых ученых (1999), IV International Workshop «Strong Microwaves in Plasmas» (N. Novgorod, August 2−9, 1999), Kinetic theory workshop (Garching, Germany, June 1215, 2000), 13th Joint Russian-German Workshop on ECRH and Gyrotrons (Greifswald, Germany, July 16−21, 2001), 29th EPS Conference on Controlled Fusion and Plasma Physics (Montreux, 17−21 June 2002), 14th Joint Russian-German Workshop on ECRH and Gyrotrons (N. Novgorod, June 24−28, 2002), V International Workshop «Strong Microwaves in Plasmas» (N. Novgorod, August 1−9, 2002), Kinetic theory workshop (Greifswald, Germany, October 21−23, 2002), 5-й конкурс молодых ученых ИПФРАН (Нижний Новгород, май 2003), 30th EPS Conference on Controlled Fusion and Plasma Physics (St. Petersburg, Russia, July 7−11, 2003). Результаты, полученные в главе IV, использовались в подготовке и проведении экспериментальной кампании в ноябре 2001 года на стеллараторе Wendelstein 7-AS в Гархинге.

Заключение

.

В заключение приведем основные результаты диссертационной работы, совпадающие с положениями, выдвигаемыми на защиту:

1. Для моделирования ЭЦ нагрева предложены упрощенные модели интеграла соударений, позволяющие описывать как возмущение распределения резонансных электронов, так и нагрев основной электронной компоненты под действием СВЧ излучения. Проведены расчеты квазилинейной модификации электронной функции распределения в условиях циклотронного резонанса с учетом кулоновских соударений. Получены приближенные аналитические решения, описывающие квазистационарный нагрев электронной компоненты с учетом квазилинейной деградации поглощаемой СВЧ мощности.

2. Проведены расчеты спектров нетеплового ЭЦ излучения плазмы тороидальной магнитной ловушки при ЭЦ нагреве с вводом греющего излучения со стороны слабого магнитного поля. Показано, что в окрестности частоты нагрева уровень циклотронного излучения может заметно возрастать из-за деформации функции распределения резонансных электронов. Этот эффект открывает перспективы для экспериментального обнаружения слабо выраженных квазилинейных возмущений электронной функции распределения в тепловой области энергий в современных установках с ЭЦ нагревом плазмы. Получены тестовые аналитические решения задачи, которые согласуются с результатами численных расчетов применительно к установкам Т-10 и \^7-АЗ.

3. Исследован линейный механизм генерации тока увлечения при квазипоперечном вводе ЭЦ излучения в тороидальную плазму, когда поглощение электромагнитного поля происходит преимущественно на тепловых электронах, а условие циклотронного резонанса в равной мере определяется доплеровским сдвигом и релятивистскими эффектами. Показано, что в этом случае эффективность генерации полного тока может быть сопоставима с эффективностью для «классической» схемы с наклонным вводом излучения. При этом за счет более эффективного поглощения греющего излучения достигается лучшая локализация профиля тока и ббльшие значения локальной плотности тока, что делает рассматриваемую схему привлекательной для решения задач стабилизации МГД неустойчивостей плазменного шнура.

4. Исследован возможный механизм генерации ускоренных электронов в солнечной короне, реализующийся при крупномасштабной топологической перестройке магнитного поля и основанный на эффекте «убегания» электронов при сжатии магнитной силовой трубки, заполненной плазмой. В результате моделирования этого процесса найдены режимы адиабатического магнитного сжатия, в которых ускорение энергичных электронов сопровождается охлаждением основной компоненты плазмы за счет радиационных потерь. Показано, что для этих режимов возможно значительное накопление энергии в «хвосте» убегающих электронов, что позволяет рассматривать магнитное сжатие в качестве возможного механизма, инициирующего солнечные вспышки в корональных петлях.

5. Найдены условия, при которых в результате инжекции мощных нейтральных пучков в тороидальную плазму формируются неустойчивые распределения быстрых ионов, приводящие к генерации электростатических плазменных мод в окрестности ионных циклотронных гармоник и, в частности, нижнегибридных волн в условиях двойного резонанса (при совпадении нижнегибридной частоты с частотой высокой ионной циклотронной гармоники). Теоретические результаты подтверждены на стеллараторе V7-AS в ходе измерений спектров коллективного рассеяния излучения мощного гиротрона и спектров собственного излучения плазмы на ионных циклотронных гармониках.

Пользуясь приятной возможностью автор выражает глубокую благодарность своему учителю Евгению Васильевичу Суворову, чуткое руководство и опыт которого во многом определили научные взгляды автора. Автор также признателен своим соавторам и коллегам по работе: В. Ю. Трахтенгерцу, открывшего для автора мир астрофизикиX. Маассбергу (Н. Maa? berg), оказавшего неоценимую поддержку при работе автора в Институте физики плазмы в Гархинге и ГрайфсвальдеМ. Д. Токма-ну, дискуссии с которым фактически инициировали работы по генерации ЭЦ тока-: Н. Б. Марущенко, любезно предоставившего баунс-усредненный фоккер-планковский кодЛ. В. Лубяко, Д. Хартману (D. Hartmann), В. Каспареку (W. Kasparek) и Э. Хольцхауэру (Е. Holzhauer) за поддержку при проведении эксперимента на стеллараторе W7-ASФ. Вагнеру (F. Wagner) за поддержку и внимание к работе автора. Автор также признателен всем своим коллегам по отделам № 120, 130, 140 (ИПФ) и ЕЗ (IPP), без дружелюбного отношения которых научная деятельность автора несомненно была бы менее плодотворной.

Показать весь текст

Список литературы

  1. А. И., Ахиезер И. А., Половин Р. В. и др. Электродинамика плазмы. М.: Наука, 1974.
  2. Killeen J, Kerbel G. D., McCoy M. G., Mirin A. A. Computational methods for kinetic models of magnetically confined plasmas. New York: Springer-Verlag, 1986
  3. Ю. H., Костомаров Д. П. Математическое моделирование плазмы / М.: Наука, 1982.
  4. Ю. Н., Костомаров Д. П. Математическое моделирование плазмы / Второе изд. М.: Наука, 1993.
  5. Brambilla M. Kinetic Theory of Plasma Waves. Oxford: Clarendon Press, 1998.
  6. В. В. Электромагнитные волны в космической плазме. М.: Наука, 1977. 432 с.
  7. В. В. Излучение в астрофизической плазме. М.: Янус-К, 1997. 528 с.
  8. С. Т. / Физика плазмы и проблемы управляемых термоядерных реакций. М.: Изд. АН СССР, 1958. Т. 3. С. 50−65.
  9. Рудаков JL И., Сагдеев Р. 3. / Физика плазмы и проблемы управляемых термоядерных реакций. М.: Изд. АН СССР, 1958. Т. 3. С. 268−277.
  10. . Б. /Физика плазмы и проблемы управляемых термоядерных реакций. М.: Изд. АН СССР, 1958. Т. 4. С. 370−379.
  11. А. В., Димант Я С. Кинетическая теория конвективного переноса быстрых частиц в токамаках J J Вопросы теории плазмы / Под ред. Б. Б. Кадомцева. М.: Энергоатомиздат, 1987. Вып. 16. С. 3−101.
  12. Е. М., Питаевский JL П. Физическая кинетика. М.: Наука, 1979.
  13. Fish N. J. Theory of current drive in plasmas // Rev. Mod. Phys. 1987. Vol. 591. P. 175−234.
  14. И. M. О роли короналъных транзиентов во вспышечных явлениях на Солнце // Известия АН, серия физ. 1995. Т. 59 (7). С. 112−123.
  15. А. И., Красильников А. В., Щемелинин С. Г. Особенности поведения функции распределения ионов в плазме токамака при магнитном адиабатическом сжатии // Физика плазмы. 1985. Т. 11 (1). С. 91.
  16. Я. Л., Демехов А. Г., Трахтенгерц В. Ю., Шер Э. М., Юнаков-ский А. Д. Об эффекте «убегания» при магнитном адиабатическом сжатии плазмы // Физика плазмы. 1988. Т. 14. С. 539−546.
  17. Dreicer Н. Electron and ion runaway in a fully ionized gas // первые работы Phys. Rev. 1960. Vol. 117. P. 329−342.
  18. А. В. К теории убегающих электронов // ЖЭТФ. 1960. Т. 39. С. 1296.
  19. А. Н. К теории убегающих электронов // ЖЭТФ. 1965. Т. 48 (5). С. 1393−1397.
  20. А. В., Живлюк Ю. Н. Убегающие электроны в неравновесной плазме // ЖЭТФ. 1965. Т. 49 (1). С. 214−224.
  21. Connor J. W., Hastie R. J. Relativistic limitations on runaway electrons // Nucl. Fusion. 1975. Vol. 15. P. 415−424.
  22. Cohen R. H. Runaway electrons in an impure plasma // Phys. Fluids. 1976. Vol. 192. P. 239−244.
  23. А. В., Димант Я. С., Днестровский Ю. Н., Смирнов А. П. Влияние электрического поля на функцию распределения энергичных электронов // Физика плазмы. 1979. Т. 5 (4). С. 777−785.
  24. Suvorov Е. V., Erckman V., Holzhauer Е., Kasparek W., Dryagin Y. A. et al Ion temperature and beam-driven plasma waves from collective scattering of gyrotron radiation in W7-AS // Plasma Phys. Control. Fusion. 1995. Vol. 37 (11). P. 12 071 213.
  25. E. V., Holzhauer E., Kasparek W., Burov А. В., Lubyako L. V., Skalyga N. K., Smolyakova О. В., Erckmann V., Fraiman A. A. et al. Collective Thomson scattering at W7-AS// Plasma Phys. Control. Fusion. 1997. Vol. 39 (12B). P. B337-B351.
  26. E. В., Шалашов А. Г. Численное решение двумерного кинетического уравнения для моделирования ЭЦР нагрева. Нижний Новгород, 1998. 27 стр. (Препринт ИПФ РАН № 462).
  27. В. Ю., Шалашов А. Г. Эффекты ускорения электронов при магнитном сжатии короналъной плазмы // Астрономический журнал. 1999. Т. 76 (8). С. 618−627.
  28. А. Г., Трахтенгерц В. Ю. Ускорение электронов при магнитном сжатии короналъной плазмы // Труды IV Нижегородской сессии молодых ученых. 1999. С. 6−7.
  29. А. Г. Генерация безындукционного тока в условиях электронного циклотронного резонанса при квазипоперечном вводе излучения // Известия вузов. Радиофизика. 2002. Т. 45 (4). С. 339−348.
  30. А. Г., Суворов Е. В. Моделирование кулоновских соударений при кинетическом описании электронно-циклотронного нагрева плазмы // Физика плазмы. 2002. Т. 28 (1). С. 51−61.
  31. А. Г., Суворов E. В. Квазилинейная модификация спектров циклотронного излучения тороидальной плазмы вблизи частоты ЭЦ нагрева. Нижний Новгород, 2002. 28 стр. (Препринт ИПФ РАН № 608).
  32. Shalashov A. G., Suvorov Е. V., Lubyako L. V., Maassberg Н. and W7-AS Team. NBI-driven Ion Cyclotron Instabilities at W7-AS Stellarator // Plasma Phys. Control. Fusion. 2003. Vol. 45. P. 395−412.
  33. А. Г., Суворов E. В. Квазилинейная модификация спектров циклотронного излучения тороидальной плазмы вблизи частоты ЭЦ нагрева // Физика плазмы. 2003. Т. 29 (10). С. 911−925.
  34. Shalashov A. G., Suvorov Е. V. On cyclotron emission of toroidal plasmas near the ECR heating frequency // Plasma Phys. Contr. Fusion. 2003. Vol. 45. P. 1779−1789.
  35. Д. В. Дрейфовая теория движения заряженной частицы в электромагнитных полях // Вопросы теории плазмы / Под ред. М. А. Леонтовича. М.: Госатомиздат, 1963. Вып. 1. С. 7−97.
  36. А. И, Соловьев Л. С. Движение заряженных частиц в электромагнитных полях // Вопросы теории плазмы / Под ред. М. А. Леонтовича. М.: Госатомиздат, 1963. Вып. 2. С. 177−261.
  37. Н. Н., Митропольский Ю. А. Асимптотические методы теории нелинейных колебаний, sep М.: Наука, 1974. С. 399−406.47 48 [49 505 960 61
  38. С. Н., Чудаков А. Е. // УФН. 1960 Т. 70. С. 585. Ван Аллен Дж. А. // УФН. 1960 Т. 70. С. 715.
  39. Г. И. / Физика плазмы и проблемы управляемых термоядерных реакций. М.: Изд. АН СССР, 1958. Т. 3. С. 3.
  40. А. И, Соловьев JI. С. Геометрия магнитного поля // Вопросы теории плазмы / Под ред. М. А. Леонтовича. М: Госатомиздат, 1963. Вып. 2. С. 3−91.
  41. А. А., Сагдеев Р. 3., <гНеоклассическая* теория диффузии // Вопросы теории плазмы / Под ред. М. А. Леонтовича. М.: Госатомиздат, 1973. Вып. 7. С. 205−271.
  42. Rome J. A. et al. Particle-orbit loss regions and their effect on neutral-injection heating in axisymmetric tokamak // Nucl. Fusion. 1976. Vol. 16 (1). P. 55−66.
  43. Grieger G., Lotz W., Merkel P., Niihrenberg J. et al. Physics Optimization of Stellarators // Physics of Fluids. 1992. Vol. B4. P. 2081−2091.
  44. Beidler C., Grieger G., Hernegger F., Harmeyer E., Kisslinger J., Lotz W. et al. Physics adn engineering design for W7X // Fusion Technology. 1990. Vol. 17 .
  45. E. Д., Супруненко В. А., Шишкин А. А. Стелларатор. / Киев: Наук, думка, 1983. 311 с.
  46. Baldzuhn J., Kick М., Maassberg Н., W7-AS Team. Measurement and calculation of the radial electric field in the stellarator W7-AS // Plasma Phys. Control. Fusion. 1998. Vol. 40 (6) P. 967−986.
  47. Kick M., Maassberg H., et al. Electric field and transport in W7-AS // Plasma Phys. Control. Fusion. 1999. Vol. 41 (ЗА). P. A549−559.
  48. Л. Лекции no теории газов. М.: Гостехиздат, 1956.
  49. А. А., Велихов Е. П., Сагдеев Р. 3. Нелинейные колебания разреженной плазмы // УФН. 1961. Т. 73. С. 701.
  50. Vedenov A. A., Velikhov E. P., Sagdeev R. Z. Nonlinear oscillations of a rarefied plasma // Nucl. Fusion. 1961. Vol. 1. P. 82.
  51. Drummond W. E., Pines D. Nonlinear stability of plasma oscillations // Nucl. Fusion Suppl. 1962. Pt. 3. P. 1049.
  52. В. Д., Шевченко В. И. // ЖЭТФ. 1962. Т. 42. С. 1515.
  53. А. А., Трахтенгерц В. Ю. // ЖЭТФ. 1963. Т. 45. С. 1009.
  54. В. Л. // ЖЭТФ. 1963. Т. 44. С. 1534.
  55. Kennel С. F., Engelmann F. Velocity space diffusion from weak plasma turbulence in a magnetiic field // Phys. Fluids. 1966. Vol. 9 (12). P. 2377−2388.
  56. N., Gasparino U., Maassberg H., Rome M. В ounce-averaged Fokker-Planck code for the description of ECRH in a periodic magnetic field // Сотр. Phys. Comm. 1997. Vol. 103. P. 145−156.
  57. Дж., Мирин А., Ренсинк M. Решение кинетических уравнений для многокомпонентной плазмы // Управляемый термоядерный синтез. / Под. ред. Дж. Киллина / Перевод изд.: Controlled fusion. New York etc., 1976. M.: Мир, 1980. С. 419−467.
  58. Karney С. F. F. Fokker-Planck and quasilinear codes // Computer Physics Reports. 1986. Vol. 4. P. 183−244.
  59. А. В., Токман M. Д. Квазилинейное уравнение для описания циклотронного резонансного взаимодействия электронов с монохроматическим излучением в магнитных ловушках // Физика плазмы. 1994. Т. 20 (4). С. 376 380.
  60. Л. Д. Кинетическое уравнение в случае кулоновского взаимодействия // ЖЭТФ. 1937. Т. 7 (2). С. 203−209.
  61. Н. Н. Проблеммы динамической теории в статистической физике. М.: Гостеиздат, 1946.
  62. Р. Статистическая механика заряженных частиц. М.: Мир, 1967.
  63. С.Т., Будкер Г. И. // Докл. АН СССР. 1956. Т. 107. С. 807.
  64. Karney С. F. F., Fish N. J. Efficiency of current-drive by fast waves // Phys. Fluids. 1985. Vol. 28. P. 116−126.
  65. Huba J. D. NRL Plasma Formulary / Revised Edition. Washington, DC: Naval Research Laboratory, 2000.
  66. Rosenbluth M. N., MacDonald W. M., Judd D. L. Fokker-Planck equation for an inverse-square force // Phys. Rev. 1957. Vol. 107 (1). P. 1−6.
  67. . А. Столкновения частиц в полностью ионизованной плазме // Вопросы теории плазмы / Под ред. М. А. Леонтовича. М.: Госатомиздат, 1963. Вып. 1. С. 98−182.
  68. В. J., Кагпеу С. F. F. Differential form of the collision integral for a relativistic plasma // Phys. Rev. Lett. 1987. Vol. 59 (16). P. 1817−1820.
  69. А. А. Теория разностных схем. M.: Наука, 1977.
  70. W. Н., Teukolsky S. A., Vetterling W. Т., Flannery B. P. Numerical Recipes in C. The Art of Scientific Computing / Second Edition. Cambridge: Cambridge University Press, 1992.
  71. С., Каулинг Т. Математическая теория неоднородных газов. М.: Изд. иностр. лит., 1960. (Chapman S., Cowling Т. G. The Mathematical Theory of Nonuniform Gases: 3d edition. Cambridge University Press, Cambridge, 1970.)
  72. С. И. Явления переноса с плазме j/ Вопросы теории плазмы / Под ред. М. А. Леонтовича. М.: Госатомиздат, 1963. Вып. 1. С. 183−272.
  73. Hirshman S. P. Classical collisional theory of beam-driven plasma currents // Phys. Fluids. 1980. Vol. 23 (6). P. 1238−1243.
  74. Высокочастотный нагрев плазмы / Материалы Всесоюзного совещания (Горький, 1982) / Под ред. А. Г. Литвака. Горький: ИПФ АН СССР, 1983. 415 с.
  75. Thumm М. MW gyrotron derelopment for fusion plasma applications // Plasma Phys. Control. Fusion. 2003. Vol. 45 (12A). P. A143-A161.
  76. Thumm M. Free ekectron masers vs gyrotrons: hrospects for high-power sources at millimeter and submillimeter wavelengths // Nucl. Instrum. Methods Phys. Res. 2002. Vol. A483. P. 186−194.
  77. Imai Т., Kobayashi N., Temkin R, Thumm M., Tran M. Q., Alikaev V. ITER R&D auxilliary systems: electron cyclotron heating and current drive system // Fusion Eng. Des. 2001. Vol. 55. P. 281−289.
  78. Luce Т. C. Applications of hihg-power millimeter waves in fusion energy research // IEEE Trans. Plasma Sci. 2002. Vol. 30. P. 734−754.
  79. Erckmann V. et al. ECRH and ECCD with high power gyrotrons at the stellarators W7-AS and W7-X // IEEE Trans. Plasma Sci. 1999. Vol. 27. P. 538−546.
  80. Controlled Fusion and Plasma Physics: Proc. of the 30th EPS Conference (St.Petersburg, 7−11 July 2003). 2003. ECA Vol. 27A .
  81. Electron cyclotron emission and electron cyclotron heating: Proc. of the 12th Joint Workshop EC-12 (Aix-en-Provence, France, 13−16 May 2002) / Ed. by G. Giruzzi. Singpore: Word Scientific, 2003.
  82. ITER Final Design Report J «ITER Council Proceedings: 1998», ITER Documentation Series No 15. Vienna: IAEA, 1998.
  83. ITER Physics Basis // Nucl. Fusion. 1999. Vol. 39. P. 2175.
  84. Green B. J. et al. ITER: burning plasma physics experiment // Plasma Phys. Control. Fusion. 2003. Vol. 45. P. 687−706.
  85. Mukhovatov V. et al. Overview of physics basis for ITER // Plasma Phys. Control. Fusion. 2003. Vol. 45. P. A235-A252.
  86. Zohm H. et al. Neoclassical tearing modes and their stabilisation by electron cyclotron current drive in ASDEX Upgrade // Phys. Plasmas 2001. Vol. 8. P. 20 092 016.
  87. Bornatici М. Electron cyclotron emission and absorbtion in fusion plasmas // Nucl. Fusion. 1983. Vol. 23 (9). P. 1153−1257.
  88. Bornatici M., Engelmann F. Electron cyclotron absorption and emission: «Vexatae quaestiones» // Phys. Plasmas. 1994. Vol. 1 (1). P. 189−198.
  89. M. Д., Гаврилова M. А. К теории ЭЦ нагрева плазмы в крупномасштабных тороидальных установках при вертикальном вводе СВЧ-мощности // Физика плазмы. 1998. Т. 24. С. 573−575.
  90. М. А., Токман М. Д., Смолякова О. Б. Численное интегрирование ЭЦ нагрева в токомаке при тангенциальной инжекции СВ Ч излучения // Физика плазмы. 2003. Т. 29. С. 60−71.
  91. М. А. Распространение электроннно-циклотронных волн в субрелятивистской плазме: Дисс. .канд. физ.-мат. наук. Н. Новгород: 1981. 121 с.
  92. Giruzzi G. Quasilinear and toroidal effects on current drive by electron cyclotron waves // Phys. Fluids. 1988. Vol. 31 (11). P. 3305−3311.
  93. Giruzzi G. Electron cyclotron emission during electron cyclotron heating in toka-maks // Nucl. Fusion. 1988. Vol. 28 (8). P. 1413−1425.
  94. Suvorov E. V., Tokman M. D. Quasilinear theory of cyclotron heating of plasma in toroidal systems by monochromatic radiation // Plasma Phys. 1983. Vol. 25 (7). P. 723−734.
  95. А. В. Циклотронные колебания равновесной плазмы // Вопросы теории плазмы / Под ред. Б. Б. Кадомцева. М.: Энергоатомиздат, 1985. Вып. 14. С. 56−226.
  96. А. Ю., Сковорода А. А., Тимофеев А. В. Коэффициент квазилинейной диффузии электронов в токомаке под действием циклотронных колебаний // Физика плазмы. 1993. Т. 19. С. 1299−1317.
  97. Harvey R. W., McCoy М. G. The CQL3D Fokker-Planck code. 1992. General Atomic Company Rep. GA-A20978. 38 p.
  98. O’Brien M. R., Cox M., Start D. F. H. Fokker-Planck studies of high-power electron cyclotron heating in tokamaks // Nucl. Fusion. 1986. Vol. 26 (12). P. 1625−1640.
  99. Westerhof E., Peeters A. G., Schippers W. Relax, a computer code for the study of collisional and wave driven relaxation of the electron distribution function in toroidal geometry / Rijnhuizen Report RR 92−211. Netherlands, 1992.
  100. Giruzzi G. Modelling of RF current drive in the presence of radial diffusion // Plasma Phys. Contr. Fusion. 1993. Vol. 35. P. A123-A140.
  101. Peeters A. High power RF heating and nonthermal distributions in tokamak plasmas/ Ph.D. Thesis. Technical University Eindhoven, Netherlands, 1994.
  102. Litvak A. G., Permitin G. V., Suvorov E. V., Fraiman A. A. Electron-cyclotron heating of plasma in toroidal traps // Nucl. Fusion. 1977. Vol. 17 (14). P. 659−665.
  103. Westerhof E. Wave propagation through an electron cyclotron layer // Plasma Phys. Control. Fusion. 1997. Vol. 39. P. 1015−1029.
  104. Bindslev H. Relativistic effects in millimeter wave applications on magnetically confined plasmas // Nucl. Fusion. 1983. Vol. 23 (2). P. 163−178.
  105. В. JI. Распространение электромагнитных волн в плазме. М.: Наука, 1967. 683 С.
  106. А. В. Теория адиабатического нагрева в длинных адиабатических ловушках // Физика плазмы. 1975. Т. 1 (1). С. 88−110.
  107. А. В. Циклотронные колебания равновесной плазмы // Вопросы теории плазмы / Под ред. Б. Б. Кадомцева. М.: Энергоатомиздат, 1985. Вып. 14. С. 56−220.
  108. Rognlien Т. D. Frequency splitting and collisional de-correlation for removing superadiabatic barries in ECRH experiments // Nucl. Fusion. 1983. Vol. 23 (2). P. 163−178.
  109. Jaeger F., Lichtenberg A. J., Lieberman M. A. Theory of electron resonance heating. I. Short time and adiabatic effects // Plasma Phys. 1972. Vol. 14 (12). P. 1073−1100.
  110. Lieberman M. A., Lichtenberg A. J. Theory of electron resonance heating. II. Long time and stochastic effects // Plasma Phys. 1972. Vol. 15 (2). P. 125−150.
  111. . В, Динамика частцик в магнитных ловушках // Вопросы теории плазмы / Под ред. Б. Б. Кадомцева. М.: Энергоатомиздат, 1984. Вып. 13. С. 373.
  112. Cohen В. I. et al. theory of free-electron-laser heating and current drive in magnetized plasmas // Rev. Mod. Phys. 1991. Vol. 63 (4). P. 949−990.
  113. H. В. // Вестник Московского университета. Вычислительная математика и кибернетика. 1978. Сер. 15, № 3.
  114. А. В., Потапенко И. Ф., Чуянов В. А. Полностью консервативные разностные схемы для нелинейных кинетических уравнений типа Ландау (Фоккера-Планка). М.: ИПМ АН СССР, 1980 (Препринт № 76).
  115. Lontano М., Pozzoli R., Suvorov Е. V. Cyclotron emission from a toroidal plasma with an isotropic two-temperature electron distribution // Nuovo Cimento. 1981. Vol. 63B (2). P. 529−540.
  116. Rome et al. Kinetic modelling of the ECRH power deposition in W7-AS // Plasma Phys. Control. Fusion. 1997. Vol. 39. P. 1173−158.
  117. Krivenski V. A kinetic study of ECRH in FTU // Proc. of 25th EPS Conference on Contr. Fusion and Plasma Phys. Praha, 29 June 3 July 1998. 1998. ECA Vol. 22C. P. 1316−1319.
  118. Tudisco 0. et al. Electron Cyclotron Heating experiments during the current ramp-up in FTU // Proc. of 26th EPS Conference on Contr. Fusion and Plasma Phys. Maastricht, 14−18 June 1999 / Oral OR26. 1999. ECA Vol. 23J. P. 101−104.
  119. Krivenski V. Bulk electron distribution function and corresponding TS and ECE spectra during ECH // Proc. of 26th EPS Conference on Contr. Fusion and Plasma Phys. Maastricht, 14−18 June 1999 / Paper P1.070.1999. ECA Vol. 23J. P. 385−388.
  120. Krivenski V. Electron cyclotron emission by non-Maxwellian bulk distribution functions If Fusion Engineering and Design. 2001. Vol. 53. P. 23−33.
  121. Kuyanov A. Yu., Skovoroda A. A., Tokman M. D. The power dependence of EC current drive efficiency on the first and second harmonics in condition of tokamak T-1011 Eur. Phys. Soc. 1995. V.16C Part I. P. 365−368.
  122. Fish N. J., Karney С. F. F. Conversion of wave energy to magnetic field energy in a plasma torus // Phys. Rev. Lett.1985. Vol. 54 (9). P. 897−900.
  123. Karney C. F. F., Fish N. J. Current in wave-driven plasmas // Phys. Fluids. 1986. Vol. 29 (1). P. 180−192.
  124. Rome M., Erckmann V., Laqua H. P., Maa? berg H., Marushchenko N. B. Comparison of high-field-side and low-field-side launch ECCD in the W7-AS stellarator // Plasma Phys. Control. Fusion. 2003. Vol. 45. P. 783−792.
  125. Antonsen Т. M., Jr., Chu K. R. Radio frequency current generation by waves in toroidal geometry // Phys. Fluids. 1982. Vol. 25 (8). P. 1295−1296.
  126. Fish N. J. Transport in driven plasmas // Phys. Fluids. 1986. Vol. 29 (1). P. 172 179.
  127. Cohen R. S., Spitzer L., Routly P. McR. The electrical conductivity of an ionized gas // Phys. Rev. 1950. Vol. 80 (3). P. 230−238.
  128. Spitzer L., Harm R. Transport phenomena in a completly ionized gas // Phys. Rev. 1953. Vol. 39 (3). P. 977−981.
  129. Fish N. J., Boozer A. H. Creating an asymmetric plasma resistivity with waves // Phys. Rev. Lett. 1980. Vol. 45 (9). P. 720−722.
  130. Kuyanov A. Yu., Skovoroda A. A., Tokman M. D. On the influence of quasi-linear distortion of the electron distribution function on ECCD efficiency // Plasma. Phys. Control. Fusion. 1997. Vol. 39. P. 277−289.
  131. Fish N. J. Conductivity of RF heated plasmas // Phys. Fluids. 1985. Vol. 28 (1). P. 245−247.
  132. Taguchi M. The effect of trapped electrons on ECRH current drive in a toroidal plasma // J. Phys. Soc. Jpn. 1983. Vol. 52. P. 2035.
  133. Taguchi M. The effect of trapped electrons on ECRH current drive in a weakly relativistic plasma // J. Phys. Soc. Jpn. 1985. Vol. 54 (1). P. 11−14.
  134. Antonsen Т. M., Jr., Hui B. Radio frequency current generation by waves in toroidal geometry // IEEE Trans. Plasma Sei. 1984. Vol. PS-12. P. 118.
  135. В. В., Ходаченко М. JI. Энерговыделение в короналъных магнитных петлях // Известия вузов. Радиофизика. 1997. Т. 40. (1−2). С. 176−212.
  136. С. А., Пикельнер С. В., Цытович В. Н. Физика плазмы солнечной атмосферы. М.: Наука, 1977. 256 стр.
  137. Г. Б. Исследование магнитосфер активных областей Солнца на РАТАН-600 // Известия АН, серия физ. 1995. Т. 59 (7). С. 90−96.
  138. Damoulin P. Results on 3-D solar magnetic field, observations and models // J. Atmospheric and Solar-Terrestial Physics. 1999. Vol. 61. P. 101−108.
  139. . П. Нулевые точки магнитного поля в солнечной атмосфере // Астрон. журн. 1999. Т. 76 (8). С. 628−635.
  140. В. Ю. Мазер на циклотронном резонансе как возможный триггер солнечной вспышки // Известия вузов. Радиофизика. 1996. Т. 39 (6). С. 699 711.
  141. Swann W. F. G. A mechanism of acquirement of cosmic-ray energies by electrons // Phys. Rev. 1933. Vol. 43 (4). P. 217−220.
  142. M. Г. Адиабатическое сжатии плазмы в токамаке. Л.: Наука, 1979.
  143. Э. А., Алексеев Ю. А., Бревнов Н. Н. и др. // Атомная энергия. 1982. Т. 52. С. 108.
  144. J., Zelenyi L. M. // J. Geophys.Res. 1989. Vol. 94 (A9). P. 11 821.
  145. Я. К., Фадеев В. М. Роль механизма магнитной накачки в ускорении частиц в атмосфере Солнца // Астрон. журн. 1996. Т. 73 (2). С. 280−291.
  146. Uberoi С. Alfven resonances, forced magnetic reconnection and model of solar flares 11 Plasma Phys. Control. Fusion. 2003. Vol. 45. P. 949−955.
  147. M. Л. Динамическая модель солнечной магнитной трубки // Астрон. журн. 1996. Т. 73 (2). С. 280−291.
  148. В. Ю., Шалашов А. Г. Ускрение электронов в солнечной короне при адиабатическом магнитном сжатии// Доклад на VII Симпозиуме по солнечно-земной физике России и стран СНГ (Москва, ИЗМИРАН, 15−18 декабря 1998, неопубликовано).
  149. Э. Р. Солнечная магнитогидродинамика / Перевод изд.: Priest Е. R. Solar magnetohydrodynamics. Dordrecht: Reidel D. Publ. Сотр., 1982. M.: Мир, 1985.
  150. The Collected Works of Irving Lengmuir / Ed. G. Suits. New York, 1961.
  151. Л. Элекрические зонды / Методы исследования плазмы / Под ред. В. Лохте-Хольтгревена. М: Мир, 1971. С. 459−505.
  152. Ю. С., Чувашев С. Н. Колебания и волны в низкотемпературной плазме. Пограничные слои в плазме / Энциклопедия низкотемпературной плазмы / Под ред. В. Е. Фортова. М.: Наука, 2000. С. 126−143.
  153. М. С., Uhlenbeck G. Е. On the theory of Brownian motion II // Rev. Mod. Phys. 1945. Vol. 17 (2−3). P. 323−342.
  154. Дж. П., Бук Д. JI. Решение уравнений непрерывности методом коррекции потоков // Управляемый термоядерный синтез. / Под. ред. Дж. Киллина / Перевод изд.: Controlled fusion. New York etc., 1976. M.: Мир, 1980. С. 92−141.
  155. П. А., Трахтенгерц В. Ю. Алъвеновские мазеры. Горький, 1986. 190 с.
  156. Гапонов-Грехов А. В., Глаголев В. М., Трахтенгерц В. Ю. Мазер на циклотронном резонансе (МЦР) с фоновой плазмой // ЖЭТФ. 1981. Т. 80. С. 2198.
  157. McTiernan J. М., Petrosian V. The behavior of beams of relativistic nonthermal electrons under the influence of collisions and synchrotron losses // Astrophys. J. 1990. Vol. 359. P. 524−540.
  158. Cottrel G. A., Dendy R. O. Superthermal radiation from fusion products in JET 11 Phys. Rev. Lett. 1988. Vol. 60 (1). P. 33−36.
  159. Schild P. et al. Sawtooth oscillations in cyclotron emission from JET // Nucl. Fusion. 1989. Vol. 29 (5). P. 834−839.
  160. The JET Team. Fusion energy production from a deuterium-tritium plasma in the JET tokamak // Nucl. Fusion. 1992. Vol. 32 (2). P. 187−203.
  161. Cottrel G. A. et al. Ion cyclotron emission measurements during JET deuteriumtritium experiments // Nucl. Fusion. 1993. Vol. 33 (9). P. 1365−1387.
  162. Greene G. J. and the TFTR Team. // in Proceedings of the 17th European Conference on Controlled Fusion and Plasma Heating (Amsterdam). 1990. Part IV. Vol. 14B. P. 1540.
  163. Chang R. P. H. Lower-hybrid beam-plasma Instability // Phys. Rev. Lett. 1975. Vol. 35 (5). P. 285−288.
  164. Chang R. P. H., Porkolab M. Experimental observation of the Harris-type ion beam cyclotron instability// Nucl. Fusion. 1976. Vol. 16 (1). P. 142−144.
  165. Goede A. P. H. et al. Ion Bernstein waves excited by an energetic ion beam in a plasma // Nucl. Fusion. 1976. Vol. 16 (1). P. 85−96.
  166. D. К. et al. Electromagnetic emission from a neutral-beam-injected plasma // Nucl. Fusion. 1986. Vol. 26 (2). P. 201−209.
  167. Chen Y. et al. // Bull. Am. Phys. Soc. 1993. 38. P. 2094.
  168. А. Б. Коллективные процессы в токомаке с энергичными частицами // Вопросы теории плазмы / Под ред. М. А. Леонтовича. М.: Госа-томиздат, 1979. Вып. 9. С. 103−264
  169. Berk Н. L., Horton W. Jr, Rosenbluth Н. N., Rutherford P. H. Microinstability theory of two-energy component toroidal systems // Nucl. Fusion. 1975. Vol. 15. P. 819.
  170. Brecht S. H., Hichcock D. A., Horton W. Jr Parametric dependence of the ion cyclotron instability in a two-energy-component system // Phys. Fluids. 1978. Vol.21 (3). P. 447−460.
  171. Dendy R. O. et al. A mechanism for beam-driven excitation of ion cyclotron harmonic waves in the Tokamak Fusion Test Reactor // Phys. Plasmas. 1994. Vol. 1 (10). P. 3407.
  172. Dendy R. O. Interpretation of ion cyclotron emission from fusion and space plasmas // Plasma Phys. Control. Fusion. 1994. Vol. 36. P. B163-B172.
  173. Dendy R. O. et al. Ion cyclotron emission due to collective instability of fusion products and beam ions in TFTR and JET // Nucl. Fusion. 1995. Vol. 35 (12). P. 1733−1742.
  174. Lashmore-Davis C. N. et al. Electromagnetic ion cyclotron instability driven by a hot minority ion species with temperature anisotropy // Plasma Phys. Control. Fusion. 1993. Vol. 35 (11). P. 1529−1540.
  175. Cauffman S. et al. // Controlled Fusion and Plasma Physics (Proc. 22nd Eur. Conf. Bournemouth, 1995). Geneva: European Physical Society, 1995. Vol. 19C Part II. P. 405.
  176. Dendy R. O. et al. The excitation of obliquely propagating fast Alfen waves at fusion ion cyclotron harmonics 11 Phys. Plasmas. 1994. Vol. 1 (6). P. 1918−1928.
  177. Dendy R. O. et al. // Controlled Fusion and Plasma Physics (Proc. 22nd Eur. Conf. Bournemouth, 1995) V. 19C, Part II, European Physical Society, Geneva (1995). P.229.
  178. Rust N. et al. Recent results from W7-AS with the new radial NBI injector // Proceedings of the 29th EPS Conference on Controlled Fusion and Plasma Physics (Montreux, 17−21 June 2002). 2002. ECA Vol. 26B. Paper 4.045.
  179. Baldzuhn J., Werner A., Wobig H., Rust N., Klose S. and W7-AS Team. Perpendicular neutral beam injection into the stellarator W7-AS // Plasma Phys. Control. Fusion. 2003. Vol. 45. P. 891−910.
  180. Shalashov A. G. Kinetic stability analysis for NBI heating scenarios at W7-AS // 13th Joint Russian-German Workshop on ECRH and Gyrotrons STC Meeting (Greifswald, Germany, July 16−21, 2001, Heony6jiHK: oBaHo)
  181. Penningsfeld F. P. Computation of the density distribution of the injected neutral beam particles by the program NEUDEN. Garching: Max-Planck-Institut fur Plasmaphysik, 1986 (Report IPP 4/229).
  182. Suvorov E. V., Ryndyk D. A. Stochastic broadening of ion cyclotron resonances due to development of lower hybrid turbulence // Phys. Lett. A. 2001. Vol. 282 (1−2). P. 31−35.
Заполнить форму текущей работой