Помощь в написании студенческих работ
Антистрессовый сервис

Ассоциация белка p53 с ядерным матриксом в клетках разных типов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Многие авторы включают в структуру ядерного матрикса различные компоненты в связи с тем, что состав ядерного матрикса зависит от способа его выделения. Химически ядерный матрикс состоит главным образом из кислых негистоновых белков (90−98%), небольшого количества ДНК, РНК, липидов и углеводов. Следует отметить, что в зависимости от концентрации детергента и полноты экстракции содержание… Читать ещё >

Ассоциация белка p53 с ядерным матриксом в клетках разных типов (реферат, курсовая, диплом, контрольная)

Содержание

  • Литературный обзор
  • Глава 1. Структура ядерного матрикса
    • 1. 1. Структурная организация ядерной оболочки
    • 1. 2. Белки ядерного матрикса
    • 1. 3. Ассоциация ДНК с ядерным матриксом: MAR/SAR 14 последовательности
    • 1. 4. Компартменты ядра, связанные с ядерным 16 матриксом: ядрышко, тельца Кахаля,
  • PML-NB
  • Глава 2. Участие ядерного матрикса в регуляции транскрипции
    • 2. 1. Ассоциация транскрибируемой ДНК с ядерным 19 скелетом
    • 2. 2. Взаимодействие факторов транскрипции с ядерным 21 матриксом
    • 2. 3. Проблемы, связанные с получением препаратов 22 ЯМ
  • Глава 3. Структура и функции р
    • 3. 1. Белок р53 как опухолевый супрессор
    • 3. 2. Структурная организация белка р
    • 3. 3. Регуляция стабильности белка р
    • 3. 4. Модификации белка р
    • 3. 5. Функции белка р
  • Глава 4. Транскрипционный фактор р53 и ядерный матрикс
    • 4. 1. Роль ядерных PML-телец в функционировании р
    • 4. 2. Взаимодействие белка р53 с ядерным матриксом
  • Материалы и методы исследования
  • Результаты и обсуждение
  • Глава 5. Сравнительная характеристика препаратов ЯМ, полученных в разных условиях
    • 5. 1. Сравнительный анализ белковых профилей 50 различных препаратов ядерного матрикса
    • 5. 2. Сравнительный анализ структурной целостности 52 ЯМ, полученного в различных условиях
  • Глава 6. Взаимодействие белка р53 с ядерным матриксом 59 клеток различных типов
    • 6. 1. Полное связывание ядерного белка р53 с ядерным 59 матриксом клеток НЕК
    • 6. 2. Полное связывание активированного ядерного белка 62 р53 с ядерным матриксом клеток MCF
    • 6. 3. Неполное связывание белка р53 с ядерным 65 матриксом клеток COS
  • Глава 7. Разные формы белка р53 в составе ЯМ
    • 7. 1. Экстракция белка р53 из ЯМ клеток НЕК293 81 слабыми растворами щелочи и кислоты
    • 7. 2. Экстракция активированного белка р53 из ЯМ 83 клеток MCF7 слабыми растворами щелочи и кислоты
    • 7. 3. Экстракция матрикссвязанного белка р53 неионным 84 детергентом в разных типах клеток

Актуальность исследования.

В связи со сложной организацией генома и большим количеством структурных элементов и регуляторных факторов, функционирующих в клеточном ядре, субкомпартментализация макромолекул, т. е. их корректная пространственная локализация, является таким же важным биологическим свойством, как и их активность.

Предметом исследования в настоящей работе является ядерный матрикс (ЯМ) — структура, которая обеспечивает пространственную координацию внутриядерных макромолекул, надмолекулярных комплексов и биохимических процессов (Яупеагзоп & Зшбггшп 2011). Одна из важнейших функций ЯМ связана с его участием в процессе транскрипции, и нарушения его структуры приводят к возникновению серьезных патологий. Мутации в белках ЯМ приводят к нарушению репарации ДНК, регуляции клеточного роста и дифференцировки клеток. Многие наследственные заболевания (ламинопатии, липодистрофии, мышечные дисплазии, нейродегенеративные болезни и многие др.) вызываются мутациями в генах некоторых ферментов, структурных белков и транскрипционных факторов, которые входят в состав ЯМ (Вгоеге е1 а1. 2006, Лгщ е1 а1. 2010, Мага1сН е! а1. 2010). В настоящее время предложено использовать несколько белков ЯМ в качестве молекулярных маркеров для диагностики опухолей мочевого пузыря, молочной железы, толстой кишки и некоторых других органов (?а^епЬасЬ-Вгш^е1 е1 а1. 2008).

ЯМ играет особую роль в регуляции активности факторов транскрипции, многие из которых с ним связаны. Одним из транскрипционных факторов, взаимодействующих с ЯМ, является опухолевый супрессор р53. Белок р53 -играет ключевую роль в регуляции клеточного ответа на ДНК-повреждающие факторы. Активация белка р53 в ответ на различные виды стресса приводит к остановке пролиферации или апоптозу. Точечные мутации и делеции гена р53 наблюдаются в 50% случаев злокачественных заболеваний. Белок р53 является фактором транскрипции, основные функции которого связаны с активацией или супрессией генов, участвующих в регуляции клеточного цикла и клеточной гибели при повреждениях ДНК. Эти функции выполняются посредством активации или подавления транскрипции многочисленных генов-мишеней р53 (Чумаков 2007).

Результаты исследований, посвященных взаимодействию макромолекул с ЯМ, часто противоречивы. Это связано не только с тем, что в разных работах используются различные модельные клеточные системы, но и с тем, что для получения ЯМ разными исследователями применяются разные методы. Это приводит к получению препаратов ЯМ, отличных как по структуре, так и по составу матрикссвязанных белков.

Несмотря на то, что исследований, посвященных структуре и свойствам белка р53, а также структуре и функциям ядерного матрикса достаточно много, о взаимодействии р53 с ЯМ известно очень мало. В то же время, I механизмы этого взаимодействия исключительно важны, поскольку их V нарушение, вызывая изменение субъядерной локализации белка р53, могут привести к подавлению его защитных функций. В связи с тем, что данные по особенностям взаимодействия белка р53 с ядерным матриксом немногочисленны и противоречивы, необходимы исследования механизмов и роли этого взаимодействия в регуляции функций опухолевого супрессора р53.

Цель и задачи работы.

Целыо данной работы является исследование взаимодействия белка р53 с ЯМ в клетках разных типов и анализ матрикссвязанного пула белка р53. В соответствии с этой целью были поставлены следующие конкретные задачи:

1. С применением различных методов получить препараты ЯМ и изучить их структурные особенности.

2. Изучить субъядерную локализацию белка р53 в клетках нескольких линий при использовании разных методов получения ЯМ.

3. Изучить экстрагируемость белка р53 в присутствии слабых растворов щелочи, кислоты и неионного детергента из препаратов ЯМ клеток разных типов.

Научная новизна работы.

Показано, что в процессе получения препаратов ядерного матрикса в его структуре могут происходить изменения, которые приводят к его частичному разрушению. Обнаружено, что степень ассоциации р53 с ядерным матриксом зависит от типа клеток. Впервые обнаружена возможность разделения матрикссвязанного пула белка р53 на отдельные субпулы. Показано, что белок р53 в составе ядерного матрикса клеток разных типов представлен гетерогенной группой белковых молекул, которые по-разному экстрагируются из ядерного матрикса растворами щелочи, кислоты и неионным детергентом.

Научно-практическая значимость работы.

В связи с важными функциями белка р53 в защите многоклеточного организма от возникновения опухолей, полученные результаты представляют интерес для исследований, посвященных функционированию опухолевого супрессора р53 и регуляции его активности. Вопрос о механизмах, определяющих связь белка р53 с ядерным матриксом, интенсивно исследуется в настоящее время, и результаты работы важны для понимания межмолекулярных взаимодействий, в которых принимает участие р53 в составе ядерного матрикса.

Работа также представляет интерес для исследований в области структуры ядерного матрикса и его роли в регуляции внутриядерных процессов. Полученные в работе результаты, показывающие различия в стабильности его структуры в процессе очистки из клеток разных типов, свидетельствуют о необходимости применения нескольких подходов к его получению в ходе изучения внутриядерного распределения белков.

Учитывая большое значение белка р53 и р53-зависимых процессов для противоопухолевой терапии, результаты работы могут быть использованы как для изучения процессов канцерогенеза, так и для разработки подходов к лечению онкологических заболеваний.

Основные положения, выносимые на защиту.

1. В клетках разных типов степень ассоциации белка р53 с ядерным матриксом различна. В зависимости от типа клеток, белок р53 может обнаруживаться либо исключительно в ядерном матриксе, либо частично присутствовать в матрикснесвязанных фракциях клеточного ядра.

2. Белок р53, связанный с ядерным матриксом, представляет собой гетерогенный пул белковых молекул, для которых характерна разная экстрагируемость в слабых растворах щелочи, кислоты и неионного детергента.

Публикации.

По результатам работы опубликованы 3 статьи и 7 тезисов докладов, список которых приводится в конце диссертации.

Апробация работы.

Результаты проведенных исследований были представлены в виде устных и стендовых докладов на российских и международных конференциях: «Биология — Наука XXI века» (Пущино, 2003, 2004, 2005), «Молодая наука в классическом университете» (Иваново, 2004), «Cell Signaling World 2006. Signal Transduction Pathways as therapeutic targets» (Luxembourg, 2006), «Conference for young scientists on molecular biology and genetics» (Kiev, 2007), «Современная химическая физика» (Туапсе, 2007) и на конкурсе молодых ученых ИПХФ РАН им. С. М. Батурина (Черноголовка, ИПХФ РАН, 2005).

Личный вклад автора.

Автором работы выполнены выделение и очистка препаратов ядерного матрикса, очистка РНК, анализ экспрессии мРНК генов-мишеней р53 методом ОТ-ПЦР, электрофорез белков и нуклеиновых кислот, окраска белков, иммуноблотинг, иммунофлуоресцентная микроскопия. Получение клеточных лизатов, ядерных и цитозольных экстрактов были выполнены совместно с Р. И. Папиной (ИПХФ РАН). Очистка ядер из клеток была проведена совместно с И. И. Пархоменко (ИПХФ РАН).

Литературный обзор Глава 1. Структура ядерного матрикса.

Многие авторы включают в структуру ядерного матрикса различные компоненты в связи с тем, что состав ядерного матрикса зависит от способа его выделения. Химически ядерный матрикс состоит главным образом из кислых негистоновых белков (90−98%), небольшого количества ДНК, РНК, липидов и углеводов. Следует отметить, что в зависимости от концентрации детергента и полноты экстракции содержание компонентов ядерного матрикса может быть различным. Без обработки РНКазой с ядерным матриксом может оставаться связанной до 10−20% РНК клетки, то есть почти вся РНК клеточного ядра, а если не применять ДНКазы и проводить щадящую экстракцию растворами солей, с ядерным матриксом может оставаться связанной и вся ДНК клеточного ядра (Збарский 1988). В большинстве работ под ядерным матриксом понимается внутриядерная сеть фибриллярных и гранулярных компонентов, периферическая ламина с поровыми комплексами и остаточное ядрышко. В других случаях понятие матрикса сужается только до сети внутриядерных структур: ядерная ламина и остаточное ядрышко в таком случае не считаются входящими в его состав (Berezney & Coffey 1977).

В соответствии с широко принятой точкой зрения ядерный матрикс обеспечивает пространственное распределение макромолекул, участвующих в фундаментальных генетических процессах, и играет ключевую роль в экспрессии генов и репликации ДНК. Компоненты ядерного матрикса включают белки ядерных телец, регуляторы клеточного цикла, тканеспецифичные транскрипционные факторы, факторы сплайсинга РНК, а так же ферменты и белки, ответственные за апоптоз (Gajkowska & Wojewodzka 2003).

Выводы.

1. Белковый состав препаратов ЯМ зависит от последовательности этапов высокосолевой экстракции и гидролиза ДНК, а также от состава экстрагирующих растворов.

2. При получении ЯМ ламин В может обнаруживаться во фракциях матрикснесвязанного хроматина, что свидетельствует о нарушении структурной целостности ЯМ в процессе его очистки. Получение ЯМ посредством экстракции хроматина хлоридом натрия после гидролиза ДНК способствует сохранению целостности ЯМ.

3. Степень взаимодействия белка р53 с ЯМ зависит от типа клеток. В клетках MCF7 через 8 ч после введения актиномицина Бив клетках НЕК293 белок р53 солокализуется с ламином В. Это показывает, что весь ядерный пул белка р53 связан с ЯМ. В ядрах клеток COS-7 белок р53 присутствует как в матрикссвязанной, так и в матрикснесвязанной форме.

4. В клетках НЕК293 связь белка р53 с ЯМ определяется — как щелочелабильными, так и кислотолабильными взаимодействиями. В клетках MCF7 белок р53, активированный актиномицином D, представлен преимущественно щелочелабильной кислотоустойчивой формой.

5. В зависимости от типа клеток, связь белка р53 с ЯМможет определяться взаимодействиями, чувствительными к неионным детергентам. В составе ЯМ клеток НЕК293 и MCF7 белок р53 устойчив к действию тритона Х-100. Связь белка р53 с ЯМ в клетках COS-7 частично разрушается при экстракции неионным детергентом.

6. Разная эффективность экстракции белка р53 щелочью, кислотой и неионным детергентом из ЯМ клеток НЕК293, MCF7 и COS-7 показывает, что матрикссвязанный пул белка р53 является гетерогенным, и состав матрикссвязанного пула белка р53 зависит от типа клеток.

Список работ, опубликованных по теме диссертации.

1. Lapshina M.A., Parkhomenko LI., Terentiev A.A. Two forms of the nuclear matrix bound p53 protein in the HEK293 cells // Annals of the New York Academy of Sciences. 2006. V.1090-A. P. 177−181.

2. Лапшина M.A., Пархоменко И. И., Папина Р. И., Терентьев A.A. Содержание ламина В во фракциях хроматина при очистке ядерного матрикса из клеток разных типов // Бюллетень экспериментальной биологии и медицины. 2008. № 11. С. 515−519.

3. Лапшина М. А., Пархоменко И. И., Терентьев A.A. Локализация белка р53 во фракциях хроматина и препаратах ядерного матрикса клеток различных типов//Вестник ННГУ. 2011. № 3. С. 100−106.

4. Лапшина М. А., Здобнова Т. А., Пархоменко И. И., Веселов А. П., Терентьев A.A. Сравнительный анализ белковых профилей препаратов ядерного матрикса, полученных в разных условиях // Тезисы Седьмой Пущинской Школы-конференции «Биология — Наука XXI века», 14−18 апреля 2003 г., Пущино, 2003. С. 346.

5. Лапшина М. А., Здобнова Т. А., Пархоменко И. И., Терентьев A.A.. Взаимодействие белка р53 с ядерным матриксом // Тезисы Восьмой Пущинской Школы-конференции «Биология — Наука XXI века», 17−21 мая 2004 г., Пущино,. 2004. С. 19.

6. Лапшина М. А., Здобнова Т. А., Пархоменко И. И., Терентьев A.A. Две формы матрикс-связанного белка р53 // Тезисы докладов научных конференций фестиваля студентов, аспирантов и молодых ученых «Молодая наука в классическом университете», 15−17 апреля 2004 г., Иваново, 2004, — С. 16.

7. Лапшина М. А., Пархоменко И. И., Терентьев A.A. Две формы матрикс-связанного белка р53 // Тезисы Девятой международной Пущинской Школы-конференции «Биология — Наука XXI века», 14−18 мая 2005 г., Пущино, 2005. С. 36.

8. Lapshina M.A., Parkhomenko I.I., Terentiev A.A. Two states of the nuclear matrix-bound p53 in HEK293 cells // Proceeding of Conference «Cell Signaling World 2006. Signal Transduction Pathways as therapeutic targets», Luxembourg, 2006. P. 452.

9. Lapshina M.A., Parkhomenko I.I., Terentiev A.A. Association of p53 protein with the nuclear matrix in cell of different types // Abstract book of Conference for young scientists on molecular biology and genetics, September 20−22th, Kiev, 2007. P. 70.

Ю.Лапшина M.A., Пархоменко И. И., Папина Р. И., Терентьев A.A. Различная степень ассоциации белка р53 с ядерным матриксом в клетках различных типов // Тезисы докладов XIX Всероссийского симпозиума «Современная химическая физика», 22 сентября -3 октября 2007 г., Туапсе, 2007. С. 355.

Заключение

.

В результате проведенного исследования показано, что в процессе получения ЯМ в его структуре могут происходить изменения, которые приводят не только к различию в белковом составе отдельных препаратов ЯМ, но и к его частичному разрушению. Как следствие, подобные нарушения структуры ЯМ могут вызывать искажения в картине субъядерной локализации макромолекул.

В связи с этим необходимо контролировать целостность ЯМ с применением его специфичных маркеров, белка ламина В. Данный подход позволил обнаружить и доказать разную степень ассоциации белка р53 с ЯМ клеток различных типов. Действительно, присутствие р53 во фракциях растворимого матрикснесвязанного хроматина не всегда можно интерпретировать как наблюдение матрикснесвязанной формы ядерного пула р53. Присутствие маркерного белка ЯМ ламина В в тех же фракциях хроматина показывает, что р53 обнаруживается в этих фракциях как часть его матрикссвязанного пула.

Степень взаимодействия белка р53 с ЯМ различна в клетках разных типов. Это, очевидно, связано с тем, что в клетках определенного типа экспрессируются определенные белки, с которыми взаимодействует белок р53. Важно отметить, что от типа клеток зависит не только степень ассоциации белка р53 с ЯМ, но и устойчивость самого ЯМ к процедурам экстракции матрикснесвязанного хроматина. Это свидетельствует о серьезных отличиях в белковых составах ядер исследуемых клеток, и различия во взаимодействии макромолекул с ЯМ выглядит в этой связи вполне естественно.

Обнаружена возможность разделения матрикссвязанного пула белка р53 на отдельные субпулы. Оказалось, что р53 в составе ЯМ клеток НЕК293 представлен гетерогенной группой белковых молекул, которые по-разному экстрагируются из ЯМ растворами щелочи и кислоты. Применение подобной экстракции на образцах ЯМ клеток MCF7 после активации р53 актиномицином D показало, что в условиях, когда белковый пул р53 представлен преимущественно его активной формой, в ЯМ обнаруживается преимущественно щелочелабильная кислотоустойчивая форма р53.

Данные результаты показывают, что экстракция белка р53 из ЯМ происходит не случайно, а в соответствии с разными состояниями р53. Две основные формы матрикссвязанного р53 — щелочерастворимая и кислоторастворимая — могут образоваться по двум механизмам. Во-первых, разные формы белка р53 могут взаимодействовать с разными белками ЯМ. Белок-белковые взаимодействия в разных комплексах по-разному чувствительны к щелочи и кислоте, в связи с чем в растворе щелочи или кислоты происходит избирательная экстракция одной из форм матрикссвязанного белка р53. Второй механизм образования различных форм белка р53 в составе ЯМ может заключаться в различных посттрансляционных модификациях р53. При этом фосфорилирование и ацетилирование приводит к образованию более кислой формы белка, что «может привести к его более эффективной экстракции раствором щелочи. Схематично различные формы матрикссвязанного р53 и их экстрагируемость, в растворах щелочи и кислоты представлены на рис. 22.

Роль гидрофобных взаимодействий в ассоциации белка р53 с ЯМ различна для разных типов клеток. Так, в клетках НЕК293 и MCF7 р53 связан с ЯМ без участия гидрофобных взаимодействий, а в клетках COS-7 связь р53 с ЯМ частично обусловлена гидрофобными взаимодействиями. Фактически, в клетках COS-7 наблюдается две формы матрикссвязанного белка р53 — экстрагируемая и не экстрагируемая тритоном Х-100.

Таким образом, ассоциация белка р53 с ЯМ имеет довольно сложный характер и определяется различными взаимодействиями. Подобный характер связывания с ЯМ обусловлен, очевидно, тем, что белок р53 является мультифуикциональным ядерным белком. Помимо трансактиваторной и трансрепрессорной функций, р53 обладает ферментативной активностью и участвует в репарации ДНК. Каждая из этих функций предполагает определенный уровень посттрансляционных модификаций и взаимодействие р53 с определенными белками ядра и ЯМ. В связи с этим, многообразие форм матрикссвязанного р53 может отражать многообразие его функций.

Щелочная экстракция.

ТЕХ тч-н Кислая экстракция.

М 77.

ТП~ тп.

Рис. 22. Возможные формы матрикссвязанного белка р53.

А. Белок р53 может быть связан с ЯМ посредством двух якорных белков, X и У. При действии щелочи нарушаются взаимодействия между р53 и белком У, в результате р53 выходит в растворимую фракцию. Оставшаяся часть р53, связанная с белком X, устойчива к действию щелочи В результате кислотной экстракции в ЯМ остается р53, связанный с белком У, а комплекс р53-белок X разрушается и р53 экстрагируется из ЯМ.

Б. Белок р53 может быть фосфорилирован и ацетилирован в разной степени. Более кислая форма белка р53 может более эффективно экстрагироваться щелочью, а более основнаякислотой.

Показать весь текст

Список литературы

  1. Г. П. Гены высших организмов и их экспрессия. М.: Наука, 1989. 253 С.
  2. А.О., Чумаков П. М. Повседневные и индуцируемые функции гена р53 //Успехи биол. химии. 2010. Т. 50. С. 447−516.
  3. И.Б. Организация клеточного ядра.- М.: Медицина, 1988. 368 С.
  4. Т., Фрич Э., Сэмбрук Д. Методы генетической инженерии. Молекулярное клонирование. М.: Мир, 1984.- 480 С.
  5. Н.И., Съяксте Т. Г. Факторы транскрипции и ядерный матрикс // Молекулярная Биология. 2001. Т.35. № 5. С. 739−749.
  6. П.М., Иоцова B.C., Георгиев Г. П. Выделение плазмидных клонов, содержащих последоватьельность мРНК для невирусного Т-антигена мыши // Докл. АН СССР. 1982. Т.267. С. 1272−1275.
  7. П.М. Функция гена р53: выбор между жизнью и смертью // Биохимия. 2000. Т.65. № 1. С. 34−47.
  8. П.М. Белок р53 и его универсальные функции в многоклеточном организме // Успехи биологической химии. 2007. Т. 47. С. 3−52.
  9. Alberto M.M., Bareggi R., Bortul R., Grill V., Narducci P., Zweyer M. The nuclear matrix and apoptosis // Histochemistry and Cell Biology. 1997. V.108. P. 1−10.
  10. Alvarez J.D., Yasui D.H., Niida H., Joh T., Loh D.Y., Kohwi-Shigematsu T. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development // Genes and Development. 2000. V. 14. P. 521−535.
  11. Andreeva M., Markova D., Loidl P., Djondjurov L. Intranuclear compartmentalization of transcribed and nontranscribed c-myc sequences in Namalva-S cells // European Journal of Biochemistry. 1992. V.207. P.887−894.
  12. G., Reuven N., Shaul Y. 20S proteasomes and protein degradation «by default» // Bioessays. 2006. V. 28. № 8. P. 844−849.
  13. Aslanian A., Iaquinta P.J., Verona R., Lees J.A. Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics // Genes and Development. 2004. V. 18. № 12. P. 1413−1422.
  14. Austin C.A., Fisher L.M. DNA topoisomerases: enzymes that change the shape of DNA // Science Progress. 1990. V.74. P. 147−162.
  15. Baker S.J., Markowitz S., Fearon E.R., Willson J.K., Vogelstein B. Suppression of human colorectal carcinoma cell growth by wild-type p53 // Science. 1990. V. 249. № 4971. P. 912−915.
  16. Bell S., Klein C., Muller L., Hansen S., Buchner J. p53 contains large unstructured regions in its native state // Journal of Molecular Biology. 2002. V. 322. № 5. P. 917−927.
  17. Ben-Yehoyada M., Ben-Dor I., Shaul Y. c-Abl tyrosine kinase selectively regulates p73 nuclear matrix association // The Journal of Biological Chemistry. 2003. V. 278. № 36. P. 34 475−34 482.
  18. Berezney R., Coffey D.S. Nuclear matrix. Isolation and characterization of a framework structure from rat liver nuclei // The Journal of Cell Biology. 1977. V.73.P. 616−637.
  19. Bode J., Kohwi Y., Dickinson L., Joh T., Klehr D., Mielke C., Kohwi-Shigematsu T. Biological significance of unwinding capability of nuclear matrix-associating DNAs // Sceince. 1992. V.255. P. 195−197.
  20. Bosman F.T. The nuclear matrix in pathology // Virchows Archiv. 1999. V.435. P. 391−399.
  21. Boulikas T. Chromatin domains and prediction of MAR sequences // International Revews on Cytology. 1995. V. 162. P. 279−388.
  22. Broers J.L.V., Ramaekers F.C.S., Bonne G., Yaour B., Hutchison C.J. Nuclear Lamins: Laminopathies and their role in premature ageing //
  23. Physiological Reviews. 2006. V. 86. P. 967−1008.
  24. Brohawn S.G., Partridge J.R., Whittle J.R., Schwartz T.U. The nuclear pore complex has entered the atomic age // Structure. 2009. V. 17. P. 1156−1168.
  25. Brooks C.L., Gu W. p53 ubiquitination: Mdm2 and beyond // Molecular Cell. 2006. V. 21. № 3. P. 307−315.
  26. Chamberland H., Lafontaine J.G. Localization of snRNP antigens in nucleolus-associated bodies: Study of plant interphase nuclei by confocal and electron microscopy // Chromosoma. 1993. V. 102. P. 220−226.
  27. Chen C.Y., Oliner J.D., Zhan Q., Fornace A.J., Vogelstein B., Kastan M.B. Interactions between p53 and MDM2 in a mammalian cell cycle checkpoint pathway // Proceedings of the National Academy of Sciences of the U.S.A. 1994. V. 91. № 7. P. 2684−2688.
  28. Chehab N.H., Malikzay A., Stavridi E.S., Halazonetis T.D. Phosphorilation of Ser-20 mediates stabilization of human p53 in response to DNA damage // Proceedings of the National Academy of Sciences of the U.S.A. 1999. P. 13 777−13 782. t
  29. Cockerill P.N., Yuen M.H., Garrard W.T. The enhancer of the immunoglobulin heavy chain locus is flanked by presumptive chromosomal loop anchorage elements // The Journal of Biological Chemistry. 1987. V. 262. № 11. p. 5394−5397.
  30. Coutts A.S., Adams C.J., La Thangue N.B. p53 ubiquitination by Mdm2: a never ending tail? // DNA Repair (Amst). 2009. V. 8. № 4. P. 483−490.
  31. D’Angelo M.A., Hetzer M.W. Structure, dynamics and function of nuclear pore complexes // Trends in Cell Biology. 2008. V. 18. P. 456−466.
  32. Dameron K.M., Volpert O.V., Tainsky M.A., Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1 // Science. 1994. V. 265. № 5178. P. 1582−1584.
  33. Dawson R., Mtiller L., Dehner A., Klein C., Kessler H., Buchner J. The N-terminal domain of p53 is natively unfolded // J Mol Biol. 2003. V. 332. № 5. P. 1131−1141.
  34. Deepesh N.D. Protein constitution of the chromosome axis // Chromosoma. 2002. V. 111. P. 69−79.
  35. Deppert W., Haug M. Evidence for free and metabolically stable p53 protein in nuclear subfractions of simian virus 40-transformed cells // Molecular and Cellular Biology. 1986. V. 6. № 6. P. 2233−2240.
  36. Dickinson P.A. tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition // Cell. 1999. V. 70. P. 631−645.
  37. Dignam J.D., Lebovitz R.M., Roeder R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mamalian nuclei // Nucleic Acids Research. 1983. Y. 11. P. 1475−1489.
  38. Diller L., Kassel J., Nelson C.E., Gryka M.A., Litwak G., Gebhardt M., Bressac B., Ozturk M., Baker S.J., Vogelstein B. p53 functions as a cell cycle control protein in osteosarcomas // Molecular and Cellular Biology. 1990. V. 10. № 11. P. 5772−5781.
  39. Donehower L.A., Harvey M., Slagle B.L., McArthur M.J., Montgomery C.A., Butel J.S., Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours // Nature. 1992. V. 356. № 6366. P. 215−221.
  40. Dorner D., Gotzmann J., Foisner R. Nucleoplasmic lamins and their interaction partners, LAP2a, Rb, and BAF, in transcriptional regulation // FEBS J. 2007. V. 274. P. 1362−1373.
  41. Edwards S.J., Hananeia L., Eccles M.R., Zhang Y.F., Braithwaite A.W. The proline-rich region of mouse p53 influences transactivation and apoptosis but is largely dispensable for these functions // Oncogene. 2003. V. 22. P. 4517−4523.
  42. Eliyahu D., Goldfinger N., Pinhasi-Kimhi O., Shaulsky G., Skurnik Y., Arai N., Rotter V., Oren M. Meth A fibrosarcoma cells express two transforming mutant p53 species // Oncogene. 1988. V. 3. № 3. P. 313−321.
  43. Eliyahu D., Michalovitz D., Eliyahu S., Pinhasi-Kimhi O., Oren M. Wildtype p53 can inhibit oncogene-mediated focus formation // Proceedings of the National Academy of Sciences of the U.S.A. 1989. V. 86. № 22. P. 8763−8767.
  44. Everett R.D., Meredith M., Orr A., Cross A., Kathoria M., Parkinson J. A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein // EMBO Journal. 1997. V. 16. P. 566−577.
  45. Fogal V., Gostissa M., Sandy P., Zacchi P., Sternsdorf T., Jensen K., Pandolfi P. P., Will H., Chneider C., Sal G. D. Regulation of p53 activity in nuclear bodies by a specific PML isoform // EMBO Journal. 2000. V. 19. P. 6185−6195.
  46. Fridkin A., Penkner A., Jantsch V., Gruenbaum Y. SUN-domain and KASH-domain proteins during development, meiosis and disease // Cellular and Molecular Life Sciences. 2009. V. 66. P. 1518−1533.
  47. Gajkowska B., Wojewodzka U. A new look at the cellular scaffold by embedment-free electron microscopy method // Journal of Cellular and Molecular Medicine. 2003. V. 7. № 3. P. 258−264.
  48. Gerner C., Holzmann K., Grimm R., Sauerman G. Similarity between nuclear matrix proteins of various cells revealed by an improved isolation method // The Journal of Biological Chemistry. 1998. V. 71. № 3. P. 363 374.
  49. Gemer C., Sauerman G. Nuclear matrix proteins specific for subtypes of human hematopoietic cells // Journal of Cellular Biochemistry. 1999. V. 72. № 4. P. 470−482.
  50. Gottifredi V., Prives C. P53 and PML: new partners in tumor suppression // Trends in Cell Biology. 2001. V. 11. № 5. P. 184−187.
  51. Gottlieb T.M., Oren M. p53 and apoptosis // Seminars In Cancer Biology. 1998. V. 8. № 5. P. 359−368.
  52. Gruenbaum Y., Wilson K. L, Harel A., Goldberg M., Cohen M. Review: nuclear lamins-structural proteins with fundamental functions // Journal of Structural Biology. 2000. V. 129. P. 313−323.
  53. Gu W., Roeder R.G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain // Cell. 1997. V. 90. P. 595−606.
  54. Hancock R. Internal organisation of the nucleus: assembly of compartments by macromolecular crowding and the nuclear matrix model // Biology of The Cell. 2004. V. 96. № 8. P. 595−601.
  55. Harms K., Nozell S., Chen X. The common and distinct target genes of the p53 family transcription factors // Cellular and Molecular Life Sciences. 2004. V. 61. № 7−8. P. 822−842.
  56. Hart C.M., Laemmli U.K. Facilitation of chromatin dynamics by SARs // Current Opinion in Genetics and Development. 1998. V. 8. № 5. P. 519−525.
  57. Haupt Y., Maya R., Kazaz A., Oren M. Mdm2 promotes the rapid degradation of p53 //Nature. 1997. V. 387. № 6630. P. 296−299.
  58. He D., Nickerson J.A., Penman S. Core filaments of the nuclear matrix // The Journal of Cell Biology. 1990. V. 110, P. 569−580.
  59. Heessen S., Fornerod M. The inner nuclear envelope as a transcription factor resting place // The EMBO Reports. 2007. V. 8. P. 914−919.
  60. Hodge L.D., Mancini P., Davis F.M., Heywood P. Nuclear matrix of HeLa S3 cells // The Journal of Cell Biology. 1977. V. 72. P. 194−208.
  61. Hoffmann J.F.-X., Laroche T., Brand A., Gasser S.M. RAP-1 factor is necessary for DNA loop formation in vitro at the silent mating type locus HML // Cell. 1989. V. 57. P. 725−737.
  62. Hofmann T.G., Will H. Body language: the function of PML nuclear bodies in apoptosis regulation // Cell Death and Differentiation. 2003. V.10. P. 1290−1299.
  63. Honda R., Tanaka H., Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53 // FEBS Lett. 1997. V. 420. JVs 1. P. 25−27.
  64. Horn H.F., Vousden K.H. Coping with stress: multiple ways to activate p53 // Oncogene. 2007. V. 26. № 9. P. 1306−13 016.
  65. Hupp T.R., Meek D.V., Midgley C.A., Lane D.P. Regulation of the specific DNA binding function of p53 // Cell. 1992. V. 71. P. 875−886.
  66. Jackson D.A., Cook P.R. Transcription occurs at a nuclear skeleton // EMBO Journal. 1985. V. 4. P. 919−925.
  67. Jenkins J.R., Rudge K., Currie G.A. Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53 // Nature. 1984. V. 312. № 5995. P. 651−654.
  68. Jenkins J.R., Rudge K., Chumakov P., Currie G.A. The cellular oncogene p53 can be activated by mutagenesis // Nature. 1985. V. 317. № 6040. P. 816−818.
  69. Jiang M., Axe T., Holgate R., Rubbi C.P., Okorokov A.L., Mee T., Milner J. P53 binds the nuclear matrix in normal cells: binding involves the proline-rich domain of p53 and increases following genotoxic stress // Oncogene. 2001. V. 20. P. 5449−5458.
  70. Jin Y., Lee H., Zeng S.X., Dai M.S., Lu H. MDM2 promotes p21wafl/cipl proteasomal turnover independently of ubiquitylation // EMBO Journal. 2003. V. 22. № 23. P. 6365−6377.
  71. Jing G-J., Xu Dong-Hui, Shi Song-Lin, Li Qi-Fu, Wang San-Ying, Wu Fu-Yun, Kong Hai-Yan Aberrant expression of nuclear matrix proteins during HMBA-induced differentiation of gastric cancer cells // World J Gastroenterol. 2010. V. 16. № 17. P. 2176−2182.
  72. Kallajoki M., Osborn M. Gel electrophoretic analysis ofnuclear matrix fractions isolated from different human cell lines // Electrophoresis. 1994. V. 15. № 3−4. P. 520−528.
  73. Kamijo T., Zindy F., Roussel M.F., Quelle D.E., Downing J.R., Ashmun R.A., Grosveld G., Sherr C.J. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product pl9ARF // Cell. 1997. V. 91. № 5. P. 649−659.
  74. Kamijo T., Weber J.D., Zambetti G., Zindy F., Roussel M.F., Sherr C.J. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2 // Proceedings of the National Academy of Sciences of the U.S.A. 1998. V. 95. № 14. P. 8292−8297.
  75. Kastan M.B., Onyekwere O., Sidransky D., Vogelstein B., Craig R.W. Participation of p53 protein in the cellular response to DNA damage // Cancer Research. 1991. V. 51. P. 6304−6311.
  76. Kaufmann S.H., Okret S., Wikstrom A.C., Gustafsson J.A., Shaper J.H. Binding of the glucocorticoid receptor to the rat liver nuclear matrix. The role of disulfide bond formation // The Journal of Biological Chemistry. 1986. V. 261. № 26. P. 11 962−11 967.
  77. Khodarev N.N., Votrin I.I., Debov S.S. Inhibition of chromatin autolysis in the process of isolating and incubating rat liver cell nuclei // Vopr. Med. Khim. 1981. V. 27. P. 538−544.
  78. Ko L.J., Prives C. p53: puzzle and paradigm // Genes and Development. 1996. V. 10. № 9. P. 1054−1072.
  79. Koken M.H.M., Linares-Cruz G., Quignon F., Viron A., Chelbi-Alix M.K., Sobczak-The'pot J., Juhlin L., Degos L., Calvo F.3 de The' H. The PML growth-suppressor has an altered expression in human oncogenesis // Oncogene. 1995. V. 10. P. 1315−1324.
  80. Kruse J.P., Gu W. Modes of p53 regulation // Cell. 2009. V. 137. № 4. P. 609−622.
  81. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 //Nature. 1970. V. 227. P. 680−685.
  82. Lain S., Midgley C., Sparks A., Lane E.B., Lane D.P. An inhibitor of nuclear export activates the p53 response and induces the localization of
  83. HDM2 and p53 to UlA-positive nuclear bodies associated with the PODs // Experimental Cell Research. 1999. V. 248. P. 457−472.
  84. Lane D.P., Benchimol S. P53: oncogene or anti-oncogene? // Genes and Development. 1990. V. 4. № 1. P. 1−8.
  85. Lane D.P., Crawford L.V. T antigen is bound to a host protein in SV40-transformed cells //Nature. 1979. V. 278. № 570. P. 1261−1263.
  86. Lavin M.F., Gueven N. The complexity of p53 stabilization and activation // Cell Death Differ. 2006. V. 13. № 6. P. 941−950.
  87. Levine A.J., Momand J., Finlay C.A. The p53 tumour suppressor gene // Nature. 1991. V. 351. № 6326. P. 453−456.
  88. Li M., Chen D., Shiloh A., Luo J., Nikolaev A. Y., Qin J., Gu W. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization//Nature. 2002. V. 416. P. 648−653.
  89. Linzer D.I., Levine A.J. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells // Cell. 1979. V. 17. № 1. P. 43−52.
  90. Liu L., Scolnick D.M., Trievel R.C., Zhang H.B., Marmorstein R., Halazonetis T.D., Berger S.L. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage 11 Molecular and Cellular Biology. 1999. V. 19. P. 1202−1209.
  91. Lowe S.W., Schmitt E.M., Smith S.W., Osborne B.A., Jacks T. P53 is required for radiation-induced apoptosis in mouse thymocytes// Nature. 1993. Y. 362. P. 847−849.
  92. Lowe S.W., Sherr C.J. Tumor suppression by Ink4a-Arf: progress and puzzles // Current Opinion In Genetics and Development. 2003. V. 13. № 1. P. 77−83.
  93. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent // The Journal of Biological Chemistry. 1951. P. 265−275.
  94. Machado C., Sunkel C.E., Andrew D.J. Antibodies reveal titin as a chromosomal protein // Journal of Cell Biology. 1998. V.141. P. 321−333.
  95. Malkin D. p53 and the Li-Fraumeni syndrome // Cancer Genetics and Cytogenetics. 1993. V. 66. № 2. P. 83−92.
  96. Mancini M.G., Liu B., Sharp Z.D., Mancini M.A. Subnuclear partitioning and functional regulation of the Pit-1 transcription factor // Journal of Cell Biology. 1999. V. 72. P. 322−338. .
  97. Maraldi N.M., Lattanzi G., Cenni V., Bavelloni A., Marmiroli S., Manzoli F.A. Laminopathies and A-type lamin-associated signalling «pathways // Advances in Enzyme Regulation. 2010. V. 50. P. 248−261.
  98. Matera A.G. Nuclear bodies: multifaceted subdomains of the interchromatin space // Journal of Cell Biology. 1999. V.9. P. 302−309.
  99. Matijasevic Z., Krzywicka-Racka A., Sluder G., Jones S.N. MdmX regulates transformation and chromosomal stability in p53-deficient cells // Cell Cycle. 2008. V. 7. № 19. P. 2967−2973.
  100. Mattout A., Dechat T., Adam S.A., Goldman R.D., Gruenbaum Y. Nuclear lamins, diseases and aging // Current Opinion In Cell Biology. 2006. V., 18. P. 335−341.
  101. Melendez J.A., Davies K.J.A. Manganese Superoxide Dismutase Modulates Interleukin-la Levels in HT-1080 Fibrosarcoma Cells // The Journal of Biological Chemistry. 1996. V. 271. № 31. P. 18 898−18 903.
  102. Michalovitz D., Halevy O., Oren M. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53 // Cell. 1990. V. 62. № 4. P. 671−680.
  103. Mirkovitch J., Spierer P., Laemmli U.K. Genes and loops in 320,000 base-pairs of the Drosophila melanogaster chromosome // Journal of Molecular Biology. 1986. V. 90. № 22. P. 55−58.
  104. Miyashita T., Reed J.C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene // Cell. 1995. V. 80. № 2. P. 293−299.
  105. Momand J., Zambetti G.P., Olson D.C., George D., Levine A.J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation // Cell. 1992. V. 69. № 7. P. 1237−1245.
  106. Monneron A., Bernhard W. Fine structural organization of the interphase nucleus in some mammalian cells // Journal of Ultrastructure Research. 1969. V. 27. P. 266−288.
  107. Moran E. Interaction of adenoviral proteins with pRB and p53 // The Journal of the Federation of American Societies for Experimental Biology. 1993. V. 7. P. 880−885.
  108. Mounkes L., Kozlov S., Burke B., Stewart C.L. The laminopathies: Nuclear structure meets disease // Current Opinion In Genetics and Development. 2003. V. 13. P. 223−230.
  109. Muchir A., Worman H.J. The nuclear envelope and human disease // Physiology. 2004. V. 19. P. 309−314.
  110. Nakamura Y. Isolation of p53-target genes and their functional analysis // Cancer Sci. 2004. V. 95. № 1. P. 7−11.
  111. Narang M.A., Dumas R., Ayerl L.M., Gravel R.A. Reduced histone biotinylation in multiple carboxylase deficiency patients: a nuclear role for holocarboxylase synthetase // Human Molecular Genetics. 2004. V. 13. № 1. P. 15−23. ,
  112. Nizami Z., Deryusheva S., Gall J.G. The Cajal body and histone locus body // Cold Spring Harb Perspect Biol. 2010. V. 2. № 7. P. a000653.
  113. Neilan E.G. Laminopathies, other progeroid disorders, and aging: Common pathogenic themes and possible treatments // American Journal of Medical Genetics. 2009. V. 149 A. P. 563−566.
  114. Oda E., Ohki R., Murasawa H., Nemoto J., Shibue T., Yamashita T., Tokino T., Taniguchi T., Tanaka N. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis // Science. 2000. V. 288. № 5468. P. 1053−1058.
  115. Okorokov A.L., Rubbi C.P., Metcalfe S., Milner J. The interaction of p53 with the nuclear matrix is mediated by F-actin and modulated by DNA damage // Oncogene. 2002. V.21. P. 356−367.
  116. Oliner J.D., Kinzler K.W., Meltzer P. S., George D.L., Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas //Nature. 1992. V. 358. № 6381. P. 80−83.
  117. Oren M., Levine A.J. Molecular cloning of a cDNA specific for the murine p53 cellular tumor antigen // Proceedings of the National Academy of Sciences of the U.S.A. 1983. V. 80. № 1. P. 56−59.
  118. Pearson M., Pelicci P.G. PML interaction with p53 and its role in apoptosis and replicative senescence // Oncogene. 2001. V.20. P. 72 507 256.
  119. Peters R. Translocation through the nuclear pore: Kaps pave the way // Bioessays. 2009. V. 31. P. 466−477.
  120. Reddy K.L., Zullo J.M., Bertolino E., Singh H. Transcriptional repression mediated by repositioning of genes to the nuclear lamina // Nature. 2008. V. 452. P. 243−247.
  121. Rout M.P., Aitchison J.D. The nuclear pore complex as a transport machine // The Journal of Biological Chemistry. 2001. V.276. № 20. P- 16 593−16 596.
  122. Rowland B.D., Denissov S.G., Douma S., Stunnenberg H.G., Bernards R., Peeper D.S. E2 °F transcriptional repressor complexes are critical downstream targets of pl9(ARF)/p53-induced proliferative arrest // Cancer Cell. 2002. V. 2. № l. P. 55−65.
  123. Rynearson A.L., Sussman C.S. Nuclear structure, organization, and oncogenesis // J Gastrointest Cancer. 2011. Epub ahead of print.
  124. Sakamuro D., Sabbatini P., White E., Prendergast G.C. The. polyproline region of p53 is required to activate apoptosis but not growtharrest//Oncogene. 1997. V. 15. № 8. P. 887−898.
  125. Schirmer E.C., Foisner R. Proteins that associate with lamins: Many faces, many functions // Experimental Cell Research. 2007. V. 313. P. 21 672 179.
  126. Shieh S.Y., Ikeda M., Taya Y., Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2 // Cell. 1997. V. 91. № 3. P. 325−334.
  127. Sherr C.J. The INK4a/ARF network in tumour suppression // Nature Reviews Molecular Cell Biology. 2001. V. 2. № 10. P. 731−737.
  128. Starr D.A., Han M. ANChors away: an actin based mechanism of nuclear positioning // The Journal of Cell Science. 2003. V. 116. P. 211−216.
  129. Staufenbiel M., Deppert W. Preparation of nuclear matrices from cultured cells: subfractionation of nuclei in situ // The Journal of Cell Biology. 1984. V.98. P. 1886−1894.
  130. Stewart Z.A., Pietenpol J.A. p53 signaling and cell cycle checkpoints // Chemical Reseach in Toxicology. 2001. V.14. № 3. P. 243−263.
  131. Stewart C.L., Roux K.J., Burke B. Blurring the boundary: The nuclear envelope extends its reach // Science. 2007. V. 318. P. 1408−1412.
  132. Stuurman N., Meijne A.M.L., van der Pol A.J., de Jong L., van Driel R., van Renswoude J. The nuclear matrix from cells of different origin // The Journal of Biological Chemistry. 1990. V.265. № 10. P. 5460−5465.
  133. Sturzbecher H.W., Donzelmann B., Henning W., Knippschild U., Buchhop S. p53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction // EMBO Journal. 1996. V. 15. № 8. P. 1992−2002.
  134. Sun J.M., Chen H.Y., Davie J.R. Nuclear factor 1 is a component of the nuclear matrix // Journal of Cellular Biochemistry. 1994. V. 55. P. 252 263.
  135. Tarunina M., Jenkins J.R. Human p53 binds DNA as a protein homodimer but monomeric variants retain full transcription transactivation activity // Oncogene. 1993. V. 8. № 11. P. 3165−3173.
  136. Tishler R.B., Calderwood S.K., Coleman C.N., Price B.D. Increases in sequence specific DNA binding by p53 following treatment with chemotherapeutic and DNA damaging agents // Cancer Reseach. 1993. V. 53. № 10. P. 2212−2216.
  137. Tibbets R.S., Brumbaugh K.M., Williams J.M., Sarkaria J.N., Cliby W.A., Shieh S.Y., Taya Y., Prives C., Abraham R.T. A role for ATR in the DNA damage-induced phosphorylation of p53 // Genes and Development. 1999. V. 13. P. 152−157.
  138. E.J., Wente S.R. 2006. Dynamic nuclear pore complexes: Life on the edge // Cell. V. 125. P. 1041−1053.
  139. Tzur Y.B., Wilson K.L., Gruenbaum Y. SUN-domain proteins: 'Velcro' that links the nucleoskeleton to the cytoskeleton // Nature Reviews Molecular Cell Biology. 2006. V. 7. P. 782−788.
  140. Utrera R., Cillavin L., Lazarevic D., Delia D., Schneider C. A novel p53-inducible gene coding for a microtubule-localized protein with G2-phase-specific expression // EMBO Journal. 1998. V. 17. P. 5015−5025.
  141. Ventura A., Kirsch D.G., McLaughlin M.E., Tuveson D.A., Grimm J., Lintault L., Newman J., Reczek E.E., Weissleder R., Jacks T. Restoration ofp53 function leads to tumour regression in vivo // Nature. 2007. V. 445. № 7128. P. 661−665.
  142. Vlcek S., Dechat T., Foisner R. Nuclear envelope and nuclear matrix: interactions and dynamics // Cellular and Molecular Life Sciences. 2001. V. 58. P.1758−1765.
  143. Vlcek S., Foisner R. Lamins and lamin-associated proteins in aging and disease // Current Opinion in Cell Biology. 2007. V. 19. P. 298−304.
  144. Voeltz G.K., Prinz W.A. Sheets, ribbons and tubules-how organelles get their shape // Nature Reviews Molecular Cell Biology. 2007. V. 8. P. 258−264.
  145. Vosberg H.P. DNA topoisomerases: enzymes that control DNA conformation // Current Topics in Microbiology and Immunology-. 19 $ 5:. V. 114. P. 19−102.
  146. VousdenK.H. p53: death star// Cell. 2000. V. 103. № 5. P. 691−694.
  147. Vousden K.H., Lu X. Live or let die: the cell’s response to p53 // Nat Rev Cancer. 2002. V. 2. P. 594−604.
  148. Wan K.M., Nickerson J.A., Krockmalnic G., Penman S. The nuclear matrix prepared by amine modification // Proceedings of the National Academy of Sciences of the U.S.A. 1999. V. 96. P. 933−938.
  149. Wang Y., Prives C. Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases // Nature. 1995. V. 376. P. 88−91.
  150. Wang Y., Blandino G., Oren M., Givol D. Induced p53 expression in lung cancer cell line promotes cell senescence and differentially modifies the cytotoxicity of anti-cancer drugs // Oncogene. 1998. V. 17. № 15. P. 19 231 930.
  151. Wilhelmsen K., Ketema M., Truong H., Sonnenberg A. KASH-domain proteins in nuclearmigration, anchorage and other processes // The Journal of Cell Science. 2006. V. 119. P. 5021−5029.
  152. Worman H.J., Courvalin J.C. The inner nuclear membrane // The Journal of Membrane Biology. 2000. V. 177. P. 1−11.
  153. H.J., Bonne G. «Laminopathies»: Awide spectrum of human diseases // Experimental Cell Research. 2007. V. 313. P. 2121−2133.
  154. Xue W., Zender L., Miething C., Dickins R.A., Hernando E., Krizhanovsky V., Cordon-Cardo C., Lowe S.W. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas // Nature. 2007. V. 445. № 7128. P 656−660.
  155. Yeung M.C., Lau A.S. Tumor suppressor p53 as a component of the tumor necrosis factor-induced, protein kinase PKR-mediated apoptotic pathway in human promonocytic U937 cells // The Journal of Biological Chemistry. 1998. V. 273. P. 25 198−25 202.
  156. Yonish-Rouach E., Resnitzky D., Lotem J., Sachs L., Kimchi A., Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6 //Nature. 1991. V. 352. № 6333. P. 345−347.
  157. Yu J., Zhang L., Hwang P.M., Kinzler K.W., Vogelstein B. PUMA induces the rapid apoptosis of colorectal cancer cells // Molecules and Cells. 2001. V. 7. № 3. P. 673−682.
  158. Zakut-Houri R., Bienz-Tadmor B., Givol D., Oren M. Human p53 cellular tumor antigen: cDNA sequence and expression in COS cells // EMBO Journal. 1985. V. 4. № 5. P. 1251−1255.
  159. Zhang Y., Xiong Y., Yarbrough W.G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways // Cell. 1998. V. 92. № 6. P. 725 734.
  160. Zhu P., Ning Y., Yao L., Chen M., Xu C. The proliferation, apoptosis, invasion of endothelial-like epithelial ovarian cancer cells induced by hypoxia // Journal of Experimental and Clinical Cancer Research. 2010. V. 29. P. 124.
Заполнить форму текущей работой