Π‘ΠΈΠΌΡΠ»ΡΡΠΈΠΈ ΡΠ΅ΡΠ΅ΡΠΎΡΠ½ΡΡ ΡΠ΅ΡΠΌΠΈΠΎΠ½ΠΎΠ² Ρ ΠΊΠΈΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠ΅ΠΉ Π² ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ Ρ ΡΠΎΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅
W. Bietenholz, N. Eicker, A. Froimner, Th. Lippert, B. Medeke, K. Schilling, and G. Weuffen. Preconditioning of improved and 'perfect' fermion actions. Comput. Phys. Commun., 119:1, 1999. T. Chiarappa, K. Jansen, K.-I. Nagai, M. Papinutto, L. Scorzato, A. Shmdler, C. Urbach, U. Wenger, and I. Wetzorke. Comparing iterative methods for overlap and twisted mass fermions. 2004. P. H. Damgaard, U. M… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π‘ΠΈΠΌΡΠ»ΡΡΠΈΠΈ ΡΠ΅ΡΠ΅ΡΠΎΡΠ½ΡΡ ΡΠ΅ΡΠΌΠΈΠΎΠ½ΠΎΠ² Ρ ΠΊΠΈΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠ΅ΠΉ Π² ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ Ρ ΡΠΎΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅ (ΡΠ΅ΡΠ΅ΡΠ°Ρ, ΠΊΡΡΡΠΎΠ²Π°Ρ, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½Π°Ρ)
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- ΠΠ»Π°Π²Π° 1. ΠΠΎΡΠΈΠ²Π°ΡΠΈΡ
- ΠΠ»Π°Π²Π° 2. Π’Π΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅
- 2. 1. ΠΠ½Π°ΠΊΠΎΠΌΡΡΠ²ΠΎ Ρ ΠΠ₯Π. ΠΠ»ΡΠΎΠ½Ρ ΠΈ ΠΊΠ²Π°ΡΠΊΠΈ
- 2. 2. ΠΠ°ΡΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠΈΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΠΈ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠ° ΠΠΈΡΠ°ΠΊΠ°
- 2. 2. 1. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΠΊΠΈΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ Π½Π° ΡΡΡΡΠΊΡΡΡΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠ° ΠΠΈΡΠ°ΠΊΠ°
- 2. 2. 2. Π‘ΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½Π°Ρ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠ° ΠΠΈΡΠ°ΠΊΠ°
- 2. 3. ΠΠ’Π ΠΊΠ°ΠΊ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½Π°Ρ ΡΠ΅ΠΎΡΠΈΡ ΠΏΡΠΈ Π½ΠΈΠ·ΠΊΠΈΡ
ΡΠ½Π΅ΡΠ³ΠΈΡΡ
Π² ΠΠ₯Π
- 2. 3. 1. ΠΠΈΡΠ°Π»ΡΠ½ΡΠΉ Π»Π°Π³ΡΠ°Π½ΠΆΠΈΠ°Π½ ΠΈ Π΅Π³ΠΎ Π½ΠΈΠ·ΠΊΠΎ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΡ
- 2. 3. 2. Ρ- ΠΈ Π΅-ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ Π² ΠΠ’Π
- 2. 3. 3. ΠΠ²Π΅Π½ΡΡ ΠΠ’Π: Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Π΄Π»Ρ Π°ΠΊΡΠΈΠ°Π»ΡΠ½ΠΎ-Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠΉ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
- 2. 3. 4. ΠΠΊΠ»Π°Π΄ Π½ΡΠ»Π΅Π²ΡΡ ΠΌΠΎΠ΄ Π² ΠΏΡΠ΅Π²Π΄ΠΎΡΠΊΠ°Π»ΡΡΠ½ΡΡ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΎΠ½Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ
- 2. 4. ΠΠΈΡΠ°Π»ΡΠ½Π°Ρ ΡΠ΅ΠΎΡΠΈΡ ΡΠ»ΡΡΠ°ΠΉΠ½ΡΡ
ΠΌΠ°ΡΡΠΈΡ
- 2. 4. 1. ΠΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π°
- 2. 4. 2. ΠΡΠ½ΠΎΠ²Π½Π°Ρ Π΄ΠΎΠ»Ρ ΡΠΏΠ΅ΠΊΡΡΠ° ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ. Π Π°Π·Π²Π΅ΡΡΠΊΠ° ΡΠΏΠ΅ΠΊΡΡΠ°
- 2. 5. Π Π΅ΡΠ΅ΡΠΎΡΠ½Π°Ρ ΠΠ₯Π
- 2. 5. 1. ΠΠ°Π»ΠΈΠ±ΡΠΎΠ²ΠΎΡΠ½ΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π£ΠΈΠ»ΡΠΎΠ½Π° ΠΈ ΡΠ΅ΡΠΌΠΈΠΎΠ½Ρ Π£ΠΈΠ»ΡΠΎΠ½Π°
- 2. 5. 2. Π€Π΅ΡΠΌΠΈΠΎΠ½Ρ ΠΠΎΠ³ΡΡΠ°-Π‘Π°ΡΡΠΊΠΈΠ½Π΄Π°
- 2. 5. 3. Π‘ΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΠΈΠ½ΡΠΏΠ°ΡΠ³Π° Π£ΠΈΠ»ΡΠΎΠ½Π° ΠΈ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡ ΠΎΠ²Π΅ΡΠ»Π΅ΠΏ ΠΠΎΠΉΠ±Π΅ΡΠ³Π΅ΡΠ°
- 2. 5. 4. ΠΠΈΠΏΠ΅ΡΠΊΡΠ±ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡ ΠΠΈΡΠ°ΠΊΠ°
- 2. 5. 5. ΠΠΏΠ΅ΡΠ°ΡΠΎΡ ΠΎΠ²Π΅ΡΠ»Π΅ΠΏΠ° ΠΠΈΡΠ°ΠΊΠ° Π½Π° Π³ΠΈΠΏΠ΅ΡΠΊΡΠ±Π΅
- 3. 1. ΠΠ²Π΅Π½ΡΡ ΡΠΈΠΌΡΠ»ΡΡΠΈΠΈ ΠΊΠ°Π»ΠΈΠ±ΡΠΎΠ²ΠΎΡΠ½ΡΡ ΠΏΠΎΠ»Π΅ΠΉ
- 6. 1. ΠΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ΅ΠΆΠΈΠΌ
- 6. 1. 1. Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠΈ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ
- 6. 1. 2. Π‘ΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½Π°Ρ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡ
- 6. 2. ΠΡΠ½ΠΎΠ²Π½Π°Ρ Π΄ΠΎΠ»Ρ ΡΠΏΠ΅ΠΊΡΡΠ° ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ
- 6. 2. 1. Π Π°Π·Π²Π΅ΡΠ½ΡΡΡΠΉ ΡΠΏΠ΅ΠΊΡΡ
- 7. 1. ΠΠΎΡΠΈΠ²Π°ΡΠΈΡ
- 7. 2. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ Ρ ΠΎΠ²Π΅ΡΠ»Π΅ΠΏ ΡΠ΅ΡΠΌΠΈΠΎΠ½Π°ΠΌΠΈ
- 8. 1. ΠΠΊΡΠΈΠ°Π»ΡΠ½ΠΎ-Π²Π΅ΠΊΡΠΎΡΠ½ΡΠΉ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΎΡ
- 8. 2. Π’ΠΎΠ½ΠΊΠΎΡΡΠΈ ΡΠΈΡΠ»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π² &euro-~ΡΠ΅ΠΆΠΈΠΌΠ΅
- 8. 3. ΠΠΊΠ»Π°Π΄ Π½ΡΠ»Π΅Π²ΡΡ ΠΌΠΎΠ΄ Π² ΠΏΡΠ΅Π²Π΄ΠΎ-ΡΠΊΠ°Π»ΡΡΠ½ΡΠΉ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΎΡ
- 9. 1. ΠΠΎΡΠΈΠ²Π°ΡΠΈΡ
- 9. 2. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ Π΄Π»Ρ ΡΠ²ΠΎΠ»ΡΡΠΈΠΈ ΡΠΎΠΏΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π·Π°ΡΡΠ΄Π°
1. Π. Osterwalder and R. Schrader. Axioms for euclidean green’s functions. Comrmm. Math. Phys., 31:83, 1973.
2. K. Osterwalder and R. Schrader. Axioms for euclidean green’s functions. 2. Commun. Math. Phys., 42:281, 1975.
3. L. B. Okun. Leptons and quarlcs. Nauka, Moscow, 1981.
4. I. Montvay and G. Minister. Quantum Fields on a Lattice. Cambridge University Press, Cambridge, U.
5. M. F. Atiyah and I. M. Singer. The index of elliptic operators. 1. Annals Math., 87:484, 1968.
6. Y. Nambu. Axial vector current conservation in weak interactions. Phys. Rev. Lett., 4:380, I960.
7. J. Goldstone. Field theories with 'superconductor' solutions. Nuovo Cim., 19:154, 1961.
8. G. 't Hooft. Symmetry breaking through bell-jackiw anomalies. Phys. Rev. Lett., 37:8, 1976.
9. G. 't Hooft. Computation of the quantum effects due to a fourdimensional pseudoparticle. Phys. Rev., D14:3432, 1976.
10. T. Banks and A. Casher. Chiral symmetry breaking in confining theories. Nucl. Phys., B169:103, 1980.
11. S, R. Coleman, J. Wess, and B. Zumino. Structure of phenomenological lagrangians. 1. Phys. Rev., 177:2239, 1969.
12. C. G. Callan, S. R. Coleman, J. Wess, and B. Zumino. Structure of phenomenological lagrangians. 2. Phys. Rev., 177:2247, 1969.
13. S, Weinberg. Phenomenological lagrangians. Physica, A96:327, 1979.
14. J. Gasser and H. Leutwyler. Chiral perturbation theory to one loop. Ann. Phys, 158:142, 1984.
15. J. Gasser and H. Leutwyler. Chiral perturbation theory: expansions in the mass of the strange quark. Nucl. Phys., 13 250:465, 1985.
16. J. Gasser and H. Leutwyler. Thermodynamics of chiral symmetry. Phys. Lett., Π188:477, 1987.
17. H. Neuberger. A better way to measure in the linear a model. Phys. Rev. Lett., 60:889, 1988.
18. H. Neuberger. Soft pions in large boxes. Nucl. Phys., B300:180, 1988.
19. P. Hasenfratz and H. Leutwyler. Goldstone boson related finite size effects in field theory and critical phenomena with o (n) symmetry. Nucl. Phys., B343:241, 1990.
20. F. C. Hansen. Finite size effects in spontaneously broken su (n) xsu (n) theories. Nucl. Phys., B345:685, 1990.
21. F. C. Hansen and H. Leutwyler. Charge correlations and topological susceptibility in qcd. Nucl. Phys., B350:201, 1991.
22. W. Bietenholz. Goldstone bosons in a finite volume: The partition function to three loops. Helv. Phys. Acta, 66:633, 1993.
23. H. Leutwyler and A. Smilga. Spectrum of dirac operator and role of winding number in qcd. Phys. Rev., D46:5607, 1992.
24. T. Yoshie. Light liadron spectroscopy. Nucl. Phys. Proc. SuppL, 63:3, 1998.
25. S. Aoki and et. al. Quenched light hadron spectrum. Phys. Rev. Lett., 84:238,2000.
26. C. W. Bernard and M. F. L. Golterman. Chiral perturbation theory for the quenched approximation of qcd. Phys. Rev., D46:853, 1992.
27. P. H. Damgaard and K. Splittorff. Partially quenched chiral perturbation theory and the replica method. Phys. Rev., D62:54 509, 2000.
28. P. H. Damgaard, P. Hernandez, K. Jansen, M. Laine, and L. Lellouch. Finite-size sealing of vector and axial current correlators. Nucl. Phys., B656:226, 2003.
29. P. H. Damgaard, M. C. Diamantini, P. Hernandez, and K. Jansen. Finite-size scaling of meson propagators. Nucl. Phys., B629:445, 2002.
30. L. Ginsti, P. Hernandez, M. Laine, P. Weisz, and H. Wittig. Low-energy couplings of qcd from topological zero-mode wave functions. JHEP, 01:003, 2001.
31. P. H. Damgaard and S. M. Nishigaki. Universal spectral correlators and massive dirac operators. Nucl. Phys., B518:495, 1998.
32. P. H. Damgaard and S. M. Nishigaki. Distribution of the k-th smallest dirac operator eigenvalue. Phys. Rev., D63:45 012, 2001.
33. T. Wilke, T. Guhr, and T. Wettig. The microscopic spectrum of the QCD dirac operator with finite quark masses. Phys. Rev., D57:6486, 1998.
34. S. M. Nishigaki, P. H. Damgaard, and T. Wettig. Smallest dirac eigenvalue distribution from random matrix theory. Phys. Rev., D58:87 704, 1998. .
35. D. Diakonov and V. Yu. Petrov. Quark propagator and chiral condensate in an instanton vacuum. So v. Phys. JETP, 62:204, 1985.
36. E. V. Shuryak and J. J. M. Verbaarschot. Random matrix theory and spectral sum rules for the dirac operator in qcd. Nucl. Phys., A560:306, 1993.
37. E. V. Shuryak. The role of instantons in quantum chromodynamics. 1. physical vacuum. Nucl. Phys., B203.-93, 1982.
38. E. V. Shuryak. The role of instantons in quantum chromodynamics. 2. hadronic structure. Nucl. Phys., B203:116, 1982.
39. E. V. Shuryak. The role of instantons in quantum chromodynamics. 3. quark gluon plasma. Nucl. Phys., B203:140, 1982.
40. A. Smilga and J. J. M. Verbaarschot. Spectral sum rules and finite volume partition function in gauge theories with real and pseudoreal fennioris. Phys. Rev., D51:829, 1995.
41. Π. Π. Peskin. The alignment of the vacuum in theories of technicolor Nucl. Phys., B175:197, 1980.
42. S. Dimopoulos. Technicolored signatures. Nucl. Phys., B168:69, 1980.
43. Ya. I. Kogan, M. A. Shifman, and M. I. Vysotsky. Spontaneous breaking of chiral symmetry for real fermions and n=2 susy yang-mills theory Sov. J. Nucl. Phys., 42:318, 1985.
44. A. Altland and M. R. Zirnbauer. Field theory of the quantum kickec rotor. Phys. Rev. Lett., 77:4530, 1996.
45. M. A. Halasz and J. J. M. Verbaarschot. Effective lagrangians anc chiral random matrix theory. Phys. Rev., D52:2563, 1995.
46. G. Akemann, P. H. Darngaard, U. Magnea, and S. Nishigaki. Universality of random matrices in the microscopic limit and the dirac operatoi spectrum. Nucl. Phys., B487:721, 1997.
47. J. J. M. Verbaarschot and I. Zahed. Spectral density of the qcd dirac operator near zero virtuality. Phys. Rev. Lett., 70:3852, 1993. v.
48. J. J. M. Verbaarschot. The spectrum of the qcd dirac operator anc chiral random matrix theory: The threefold way. Phys. Rev. Lett 72:2531, 1994.
49. J. J. M. Verbaarschot. Spectral sum rules and selberg’s integral formula. Phys. Lett, 33 329:351, 1994.
50. J. J. M. Verbaarschot. The spectrum of the dirac operator near zerc virtuality for n© = 2 and chiral random matrix theory. Nucl. Phys. B426.-559, 1994.
51. J. J. M. Verbaarschot and I. Zahed. Random matrix theory and qcc in three-dimensions. Phys. Rev. Lett, 73:2288, 1994.
52. P. H. Darngaard, J. C. Osborn, D. Toublan, and J. J. M. Verbaarschot The microscopic spectral density of the QCD dirac operator. Nucl Phys., B547:305, 1999.
53. A. Bohr and B. Mottelson. Nxiclear Structure I. Benjamin, New York 1969.
54. K. G. Wilson. Confinement of quarks. Phys. Rev., D10:2445, 1974.
55. H. J. Rothe. Lattice Gauge Theories. World Scientific, Singapore, 1992.
56. S. Elitzur. Impossibility of spontaneously breaking local symmetries. Phys. Rev., D12:3978, 1975.
57. K. G. Wilson. in New Phenomena In Submiclear Physics, ed. A. Zichichi, (Plenum Press, New York), Part A (1977) 69.
58. H. B. Nielsen and M. Ninomiya. Absense of neutrinos on a lattice. 1. proof by liomotopy theory. Nucl. Phys., B185:20, 1981. Erratum Nucl. Phys. B195 (1982) 541. «.
59. H. B. Nielsen and M. Ninomiya. Absense of neutrinos on a lattice. 2. intuitive topological proof. Nucl. Phys., Π193:173, 1981.
60. L. H. Karsten. Lattice fermions in euclidean space-time. Phys. Lett., Π 104:315, 1981.
61. J. Π. Kogut and L. Susskind. Hamiltonian formulation of wilson’s lattice gauge theories. Phys. Rev., Dl 1:395, 1975.
62. L. Susskind. Lattice fermions. Phys. Rev., D16:3031, 1977.
63. J. B. Kogut. An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys., 51:659, 1979.
64. H. S. Sharatchandra, H. J. Thun, and P. Weisz. Susskind fermions on a euclidean lattice. Nucl. Phys., B192:205, 1981.
65. H. Kluberg-Stern, A. Morel, O. Napoly, and B. Petersson. Flavors of lagrangean susskind fermions. Nucl. Phys., B220:447, 1983.
66. M. F. L. Golterman and J. Smit. Selfenergy and flavor interpretation of staggered fermions. Nucl. Phys., B245:61, 1984.
67. B. Bunk, M. Delia Morte, K. Jansen, and F. Knechtli. The locality problem for two tastes of staggered fermions. 2004.
68. P. H. Ginsparg and K. G. Wilson. A remnant of chiral symmetry on the lattice. Phys. Rev., D25:2649, 1982.
69. M. Liischer. Exact chiral symmetry on the lattice and the ginsparg-wilson relation. Phys. Lett., B428:342, 1998.
70. P. Hasenfratz, V. Laliena, and F. Niedermayer. The index theorem in qcd with a finite cut-off. Phys. Lett., B427:125, 1998.
71. P. Hasenfratz. Lattice qcd without tuning, mixing and current renor-malization. Nucl. Phys., B525:401, 1998.
72. Y. Kikukawa and H. Neuberger. Overlap in odd dimensions. Nucl. Phys., B513:735, 1998.
73. H. Neuberger. Exactly rruissless quarks on the lattice. Phys. Lett., B417:141, 1998.
74. H. Neuberger. More about exactly massless quarks on the lattice. Phys. Lett., B427:353, 1998.
75. W. Bietenholz. Solutions of the ginsparg-wilson relation and improved domain wall fermions. Eur. Phys. J., CG:537, 1999.
76. W. Bietenholz, N. Eicker, A. Froimner, Th. Lippert, B. Medeke, K. Schilling, and G. Weuffen. Preconditioning of improved and 'perfect' fermion actions. Comput. Phys. Commun., 119:1, 1999.
77. K. Wilson and J. Kogut. The renormalization group and the e-expansion. Phys. i? ep., C12:75, 1974.
78. L. P. Kadanoff. Lectures on the application of renormalization group techniques to quarks and strings. Rev. Mod. Phys., 49:267, 1977.
79. W. Bietenholz and U. J. Wiese. Perfect lattice actions for quarks and gluons. Nucl. Phys., B464:319, 1996.
80. W. Bietenholz. Chiral symmetry, renormalization group and fixed points for lattice fermions. Prvc. of XIV Brazilian National Meeting on Particles and Fields, page 360.
81. W. Bietenholz, R. Brower, S. Chandrasekharan, and U. J. Wiese. Progress on perfect lattice actions for qcd. Nucl. Phys. Pmc. Suppi, 53:921,1997.
82. W. Bietenholz and U.J. Wiese. Perfect actions with chemical potential. Phys. Lett., B426:114, 1998.
83. K. Orginos, W. Bietenholz, R. Brower, S. Chandrasekharan, and U. J. Wiese. The perfect quark-gluon vertex function. Nucl. Phys. Proc. Suppl., 63:904, 1998.
84. M. Creutz. Monte carlo study of quantized su (2) gauge theory. Phys. Rev., D21:2308, 1980.
85. N. Metropolis, A. W. Rosenbluth, M. N. Eosenbluth, A. H. Teller, and E. Teller. J. Chem. Phys., 21:1087, 1953.
86. N. Cabibbo and E. Marinari. A new method for updating su (n) matrices in computer simulations of gauge theories. Phys. Lett., Bll9:387, 1982.
87. S. L. Adler. An overtaxation method for the monte carlo evaluation of the partition function for multiquadratic actions. Phys. Rev., D23:2901, 1981.
88. S. L. Adler. Overrelaxation algorithms for lattice field theories. Phys. Rev., D37:458, 1988.
89. F. R. Brown and T. J. Woch. Overrelaxed heat bath and metropolis algorithms for accelerating pure gauge monte carlo calculations. Phys. Rev. Lett., 58:2394, 1987.
90. M. Creutz. Overrelaxation and monte carlo simulation. Phys. Rev., D36:515, 1987.
91. P. Hernandez, K. Jansen, and M. Liischer. Locality properties of neu-berger's lattice dirac operator. Nucl. Phys., B552:363, 1999. ?
92. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery Numerical Recipes: The Art of Scientific Computing (2nd edition). Cambridge University Press, 1992.
93. P. Hernandez, K. Jansen, and L. Lellouch. Finite-size scaling of the quark condensate in quenched lattice qcd. Phys. Lett., B469:198, 1999.
94. W. Bietenholz. Approximate ginsparg-wikon fermions for qcd. Π ΡΠ΅. of the International Workshop on Non-Perturbative Methods and Lattice QCD Guangzhou (China), X.-Q. Luo and E.B. Gregory (exls.), page 3, 2000.
95. K. Jansen. Private communication.
96. W. Bietenholz. Convergence rate and locality of improved overlap fermions. Nucl. Phys., B644:223, 2002.
97. T. Blum and et al. Quenched lattice qcd with domain wall fermions and the chiral limit. Phys. Rev., D69:74 502, 2004.
98. J. van den Eshof, A. Frommer, Tli. Lippert, K. Schilling, and H. A. van der Vorst. Numerical methods for the qcd overlap operator, i: Sign-function and error bounds. Com, put. Phys. Cornmun., 146:203, 2002.
99. L. Giusti, C. Hoelbling, M. Liischer, and H. Wittig. Numerical techniques for lattice qcd in the eregime. Comput. Phys. Comrnun., 153:31, 2003.
100. G. Arnold, N. Cundy, J. van den Eshof, A. Frommer, S. Krieg, Th. Lip-pert, and K. Schafer. Numerical methods for the qcd overlap operator, ii: Optimal krylov subspace methods. 2003.
101. N. Cundy and et. al. Numerical methods for the qcd overlap operator, iii: Nested iterations. 2004.
102. T. Chiarappa, K. Jansen, K.-I. Nagai, M. Papinutto, L. Scorzato, A. Shmdler, C. Urbach, U. Wenger, and I. Wetzorke. Comparing iterative methods for overlap and twisted mass fermions. 2004.
103. W. Bietenholz, S. Capitani, T. Chiarappa, N. Christian, M. Hasen-buscli, K. Jansen, K.-I. Nagai, M. Papinutto, L. Scorzato, S. Shcheredin, A. Shindler, C. Urbach, Wenger U., and I. Wetzorke. Going chiral: overlap versus twisted mass fermions. 2004.
104. R. Sommer. A new way to set the energy scale in lattice gauge theories and its applications to the static force and aa in su (2) yang-mills theory. Nucl Phys., B411:839, 1994.
105. S. Necco and R. Sommer. The ΠΏ/ = 0 heavy quark potential from short: to intermediate distances. Nucl Phys., B622:328, 2002.
106. M. Guagnelli, R. Sommer, and H. Wittig. Precision computation of a low-energy reference scale in quenched lattice qcd. Nucl. Phys., B535:389, 1998.
107. P. H. Damgaard, U. M. Heller, R. Niclasen, arid K. Rummukainen. Looking for effects of topology in the dirac spectrum of staggered fermions. Nucl. Phys. Proc. Suppl., 83:197, 2000.
108. P. H. Damgaard, U. M. Heller, R. Niclasen, and K. Rummukainen. Staggered fermions and gauge field topology. Phys. Rev., D61:14 501, 2000.
109. S. Diirr and C. Hoelbling. Staggered versus overlap fermions: A study in the schwinger model with nf = 0,1,2. Phys. Rev., D69:34 503,2004.
110. E. Follana, A. Hart, and Π‘. Π’. Π. Davies. The index theorem and universality properties of the lowlying eigenvalues of improved staggered quarks. 2004.
111. K. Y. Wong and R. M. Woloshyn. Topology and staggered fennion action improvement. 2004.
112. F. Farchioni, I. Hip, and Π‘. B. Lang. Effects of topology in the dirac spectrum of staggered ferrnions. Phys. Lett., B471:58, 1999.
113. F. Farchioni, I. Hip, Π‘. B. Lang, and M. Wohlgenannt. Eigenvalue spectrum of massless dirac operators on the lattice. Nucl. Phys., B549:364, 1999.
114. B. A. Berg, U. M. Heller, H. Markum, R. Pullirsch, and W. Sakuler. Exact zero-modes of the compact qed dirac operator. Phys. Lett., B514:97, 2001.
115. R. G. Edwards, U. M. Heller, J. E. Kiskis, and R. Narayanan. Quark spectra, topology and random matrix theory. Phys. Rev. Lett., 82:41 884 191,1999.
116. P. Hasenfratz, S. Hauswirth, T. Jorg, F. Niedermayer, and K. Holland. Testing the fixed-point qcd action and the construction of chiral currents. Nucl. Phys., B643:280−320, 2002.
117. W. Bietenholz, K. Jansen, and S. Shcheredin. Spectral properties of the overlap dirac operator in qcd. JHEP, 07:033, 2003.
118. C. Lanczos. Solution of systems of linear equations by minimized iteration. J. Res. Nat. Bur. Stand., 49:33, 1952.
119. D. C. Sorensen. Implicit application of polynomial filters in a k-step arnoldi method. Siam J. Matrix Anal. Appi, 13:357, 1992.
120. F. Farchioni. Leutwyler-smilga sum rules for ginsparg-wilson lattice fermions. 1999.
121. S. Capitani, M. Gockeler, R. Horsley, P. E. L. Rakow, and G. Scliier-holz. Operator improvement for ginsparg-wilson fermions. Phys. Lett,. B4G8:150, 1999.
122. W. Bietenholz. Private notes.
123. P. H. Damgaard. Quenched finite volume logarithms. Nucl. Phys., B608:162, 2001.
124. J. J. M. Verbaarschot, and T. Wettig. Random matrix theory and chiral symmetry in qcd. Ann. Rev. Nucl. Pari. Set., 50:343, 2000.
125. L. Giusti, M. Liiseher, P. Weisz, and H. Wittig. Lattice qcd in the e-regime and random matrix theory. JHEP, 11:023, 2003.
126. E. Witten. Current algebra theorems for the w (l) 'goldstone boson'. Nucl. Phys., B156:269, 1979.
127. G. Veneziano. u (l) without instantons. Nucl. Phys., B159:213, 1979.
128. L. Giusti, G. C. Rossi, and M. Testa. Topological susceptibility in full qcd with ginsparg-wilson fermions. Phys. Lett, B587:157, 2004.
129. M. Liiseher. Topological effects in qcd and the problem of short-distance singularities. 2004.
130. L. Giusti, G. C. Rossi, M. Testa, and G. Veneziano. The ue (l) problem on the lattice with ginsparg-wilsorx fermions. Nucl. Phys., B628:234, 2002.
131. S. Chandrasekharan and U. J. Wiese. An introduction to chiral symmetry on the lattice. Prog. Part,. Nucl. Phys., 53:373, 2004.
132. L. Del Debbio and C. Pica. Topological susceptibility from the overlap. JHEP, 02:003, 2004.
133. L. Del Debbio, L. Giusti, and C. Pica. Topological susceptibility in the su (3) gauge theory. 2004.
134. W. Bietenholz, T. Chiarappa, K. Jansen, K.-I. Nagai, and S. Shcheredin. Axial correlation functions in the e-regirne: A numerical study with overlap fermions. JHEP, 02:023, 2004.
135. B. Bunk, K. Jansen, M. Liiseher, and H. Sinuna. Desy report (September 1994).
136. T. Kalkreuter and H. Siimna. An accelerated conjugate gradient algorithm to compute low lying eigenvalues: A study for the dirac operator ia su (2) lattice qcd. Comput. Phys. Commun., 93:33, 1996.
137. F. Berruto, N. Garron, C. Hoelbling, L. Lellouch, C. Rebbi, and N. Shoresh. Preliminary results from a simulation of quenched qcd with overlap fermions 011 a large lattice. Nucl. Phys. Proc. Suppl., 129:471, 2004.
138. L. Giusti, P. Hernandez, M. Laine, P. Weisz, and H. Wittig. Low-energy couplings of qcd from current correlators near the chiral limit. JHEP, 01:013, 2001.
139. S. A. Gottlieb, P. B. MacKenzie, H. B. Thacker, and D. Weingarten. Hadronic couplings constants in lattice gauge theory. Nucl. Phys., B263:704, 1986.
140. R. Gupta, G. Guralnik, G. Kilcup, A. Patel, S. R. Sharpe, and T. Warnock. The hadron spectrum on a 183×42 lattice. Phys. Rev., D36:2813, 1987.
141. H. Neuberger. Bounds on the wilson dirac operator. Phys. Rev., D61:85 015, 2000.
142. M. Liischer. Abelian chiral gauge theories on the lattice with exact gauge invariance. Nucl. Phys., B549:295, 1999.
143. M. Liischer. Weyl fermions on the lattice and the non-abelian gauge anomaly. Nucl. Phys., B568:162, 2000.
144. H. Fukaya and T. Onogi. Lattice study of the massive schwinger model — with theta term under liischer’s 'admissibility' condition. Phys. Rev., D68:74 503, 2003.
145. M. Creutz. Positivity and topology in lattice gauge theory. 2004.
146. S. Shcheredin, W. Bietenholz, K. Jansen, K.-I. Nagai, S. Necco, and L. Scorzato. Testing a topology conserving gauge action in qcd. 2004.
147. E.-M. Ilgenfritz, M. L. Laursen, G. Schierholz, M. Miiller-Preussker, and H. Schiller. First evidence for the existence of instantons in the quantized su (2) lattice vacuum. Nucl. Phys., B268:693, 1986.
148. E.-M. Ilgenfritz, Π. V. Marteinyanov, M. Miiller-Preussker, S. Shcheredin, and A. I. Veselov. On the topological content of su (2) gauge fields below t©. Phys. Rev., D66.74 503, 2002.
149. K.-I. Nagai, W. Bietenholz, T. Chiarappa, K. Jansen, and S. Shclieredin. Simulations in the Π±-regime of chiral perturbation theory. Nucl. Phys. Proc. Stippl., 129:516, 2004.
150. P. Marenzoni, L. Pugnetti, and P. Rossi. Measure of autocorrelation times of local hybrid monte carlo algorithm for lattice qcd. Phys. Lett., B315:152, 1993.
151. R. T. Scalettar, D. J. Scalapino, and R. L. Sugar. New algorithm for the numerical simulation of fermions. Phys. Rev., B34:7911, 1986.
152. S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid monte carlo. Phys. Lett, B195:216, 1987.