ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

Бимуляции Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Ρ„Π΅Ρ€ΠΌΠΈΠΎΠ½ΠΎΠ² с ΠΊΠΈΡ€Π°Π»ΡŒΠ½ΠΎΠΉ симмСтриСй Π² ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΉ Ρ…Ρ€ΠΎΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

W. Bietenholz, N. Eicker, A. Froimner, Th. Lippert, B. Medeke, K. Schilling, and G. Weuffen. Preconditioning of improved and 'perfect' fermion actions. Comput. Phys. Commun., 119:1, 1999. T. Chiarappa, K. Jansen, K.-I. Nagai, M. Papinutto, L. Scorzato, A. Shmdler, C. Urbach, U. Wenger, and I. Wetzorke. Comparing iterative methods for overlap and twisted mass fermions. 2004. P. H. Damgaard, U. M… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Бимуляции Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Ρ„Π΅Ρ€ΠΌΠΈΠΎΠ½ΠΎΠ² с ΠΊΠΈΡ€Π°Π»ΡŒΠ½ΠΎΠΉ симмСтриСй Π² ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΉ Ρ…Ρ€ΠΎΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Π“Π»Π°Π²Π° 1. ΠœΠΎΡ‚ΠΈΠ²Π°Ρ†ΠΈΡ
  • Π“Π»Π°Π²Π° 2. ВСорСтичСскоС обоснованиС
    • 2. 1. Знакомство с ΠšΠ₯Π”. Π“Π»ΡŽΠΎΠ½Ρ‹ ΠΈ ΠΊΠ²Π°Ρ€ΠΊΠΈ
    • 2. 2. ΠΠ°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠΈΡ€Π°Π»ΡŒΠ½ΠΎΠΉ симмСтрии ΠΈ ΡΠΎΠ±ΡΡ‚Π²Π΅Π½Π½Ρ‹Π΅ значСния ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€Π° Π”ΠΈΡ€Π°ΠΊΠ°
      • 2. 2. 1. ВлияниС ΠΊΠΈΡ€Π°Π»ΡŒΠ½ΠΎΠΉ симмСтрии Π½Π° ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Ρƒ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€Π° Π”ΠΈΡ€Π°ΠΊΠ°
      • 2. 2. 2. Π‘ΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Π°Ρ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€Π° Π”ΠΈΡ€Π°ΠΊΠ°
    • 2. 3. ΠšΠ’Π’ ΠΊΠ°ΠΊ эффСктивная тСория ΠΏΡ€ΠΈ Π½ΠΈΠ·ΠΊΠΈΡ… энСргиях Π² ΠšΠ₯Π”
      • 2. 3. 1. ΠšΠΈΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π»Π°Π³Ρ€Π°Π½ΠΆΠΈΠ°Π½ ΠΈ Π΅Π³ΠΎ Π½ΠΈΠ·ΠΊΠΎ энСргСтичСскиС константы
      • 2. 3. 2. Ρ€- ΠΈ Π΅-разлоТСния Π² ΠšΠ’Π’
      • 2. 3. 3. ΠšΠ²Π΅Π½Ρ‡Ρ‚ ΠšΠ’Π’: выраТСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка для аксиально-Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΉ коррСляционной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
      • 2. 3. 4. Π’ΠΊΠ»Π°Π΄ Π½ΡƒΠ»Π΅Π²Ρ‹Ρ… ΠΌΠΎΠ΄ Π² ΠΏΡΠ΅Π²Π΄ΠΎΡΠΊΠ°Π»ΡΡ€Π½ΡƒΡŽ ΠΊΠΎΡ€Ρ€Π΅Π»ΡΡ†ΠΈΠΎΠ½Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ
    • 2. 4. ΠšΠΈΡ€Π°Π»ΡŒΠ½Π°Ρ тСория случайных ΠΌΠ°Ρ‚Ρ€ΠΈΡ†
      • 2. 4. 1. ΠœΠΈΠΊΡ€ΠΎΡΠΊΠΎΠΏΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ свойства
      • 2. 4. 2. Основная доля спСктра собствСнных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. Π Π°Π·Π²Π΅Ρ€Ρ‚ΠΊΠ° спСктра
    • 2. 5. Π Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½Π°Ρ КΠ₯Π”
      • 2. 5. 1. ΠšΠ°Π»ΠΈΠ±Ρ€ΠΎΠ²ΠΎΡ‡Π½ΠΎΠ΅ дСйствиС Уилсона ΠΈ Ρ„Π΅Ρ€ΠΌΠΈΠΎΠ½Ρ‹ Уилсона
      • 2. 5. 2. Π€Π΅Ρ€ΠΌΠΈΠΎΠ½Ρ‹ ΠšΠΎΠ³ΡƒΡ‚Π°-Басскинда
      • 2. 5. 3. Π‘ΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Гинспарга Уилсона ΠΈ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€ ΠΎΠ²Π΅Ρ€Π»Π΅ΠΏ НойбСргСра
      • 2. 5. 4. ГипСркубичСский ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€ Π”ΠΈΡ€Π°ΠΊΠ°
      • 2. 5. 5. ΠžΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€ ΠΎΠ²Π΅Ρ€Π»Π΅ΠΏΠ° Π”ΠΈΡ€Π°ΠΊΠ° Π½Π° Π³ΠΈΠΏΠ΅Ρ€ΠΊΡƒΠ±Π΅
  • Π“Π»Π°Π²Π° 3. Π Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅
    • 3. 1. ΠšΠ²Π΅Π½Ρ‡Ρ‚ симуляции ΠΊΠ°Π»ΠΈΠ±Ρ€ΠΎΠ²ΠΎΡ‡Π½Ρ‹Ρ… ΠΏΠΎΠ»Π΅ΠΉ
  • Π“Π»Π°Π²Π° 4. ЧислСнноС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ гипСркубичСских Ρ„Π΅Ρ€ΠΌΠΈΠΎΠ½ΠΎΠ²
  • Π“Π»Π°Π²Π° 5. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ для диспСрсионного ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΏΠΈΠΎΠ½Π°
  • Π“Π»Π°Π²Π° 6. РаспрСдСлСниС вСроятности собствСнных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€Π° ΠΎΠ²Π΅Ρ€Π»Π΅ΠΏΠ° Π”ΠΈΡ€Π°ΠΊΠ°
    • 6. 1. ΠœΠΈΠΊΡ€ΠΎΡΠΊΠΎΠΏΠΈΡ‡Π΅ΡΠΊΠΈΠΉ Ρ€Π΅ΠΆΠΈΠΌ
      • 6. 1. 1. РаспрСдСлСниС вСроятности ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… собствСнных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ
      • 6. 1. 2. Π‘ΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Π°Ρ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ
    • 6. 2. Основная доля спСктра собствСнных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ
      • 6. 2. 1. Π Π°Π·Π²Π΅Ρ€Π½ΡƒΡ‚Ρ‹ΠΉ спСктр
  • Π“Π»Π°Π²Π° 7. ВопологичСская Π²ΠΎΡΠΏΡ€ΠΈΠΈΠΌΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ
    • 7. 1. ΠœΠΎΡ‚ΠΈΠ²Π°Ρ†ΠΈΡ
    • 7. 2. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ с ΠΎΠ²Π΅Ρ€Π»Π΅ΠΏ Ρ„Π΅Ρ€ΠΌΠΈΠΎΠ½Π°ΠΌΠΈ
  • Π“Π»Π°Π²Π° 8. ΠœΠ΅Π·ΠΎΠ½Π½Ρ‹Π΅ Π΄Π²ΡƒΡ…Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Π΅ коррСляционныС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
    • 8. 1. Аксиально-Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΉ коррСлятор
    • 8. 2. Вонкости числСнного модСлирования Π² &euro-~Ρ€Π΅ΠΆΠΈΠΌΠ΅
    • 8. 3. Π’ΠΊΠ»Π°Π΄ Π½ΡƒΠ»Π΅Π²Ρ‹Ρ… ΠΌΠΎΠ΄ Π² ΠΏΡΠ΅Π²Π΄ΠΎ-скалярный коррСлятор
  • Π“Π»Π°Π²Π° 9. ΠšΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΡ Π›ΡŽΡˆΠ΅Ρ€Π° для симуляции ΠΊΠ°Π»ΠΈΠ±Ρ€ΠΎΠ²ΠΎΡ‡Π½ΠΎΠ³ΠΎ дСйствия с ΡΠΎΡ…Ρ€Π°Π½Π΅Π½ΠΈΠ΅ΠΌ топологичСского заряда
    • 9. 1. ΠœΠΎΡ‚ΠΈΠ²Π°Ρ†ΠΈΡ
    • 9. 2. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ для ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ топологичСского заряда
  • Π“Π»Π°Π²Π° 1.
  • Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅

1. К. Osterwalder and R. Schrader. Axioms for euclidean green’s functions. Comrmm. Math. Phys., 31:83, 1973.

2. K. Osterwalder and R. Schrader. Axioms for euclidean green’s functions. 2. Commun. Math. Phys., 42:281, 1975.

3. L. B. Okun. Leptons and quarlcs. Nauka, Moscow, 1981.

4. I. Montvay and G. Minister. Quantum Fields on a Lattice. Cambridge University Press, Cambridge, U.

5. M. F. Atiyah and I. M. Singer. The index of elliptic operators. 1. Annals Math., 87:484, 1968.

6. Y. Nambu. Axial vector current conservation in weak interactions. Phys. Rev. Lett., 4:380, I960.

7. J. Goldstone. Field theories with 'superconductor' solutions. Nuovo Cim., 19:154, 1961.

8. G. 't Hooft. Symmetry breaking through bell-jackiw anomalies. Phys. Rev. Lett., 37:8, 1976.

9. G. 't Hooft. Computation of the quantum effects due to a fourdimensional pseudoparticle. Phys. Rev., D14:3432, 1976.

10. T. Banks and A. Casher. Chiral symmetry breaking in confining theories. Nucl. Phys., B169:103, 1980.

11. S, R. Coleman, J. Wess, and B. Zumino. Structure of phenomenological lagrangians. 1. Phys. Rev., 177:2239, 1969.

12. C. G. Callan, S. R. Coleman, J. Wess, and B. Zumino. Structure of phenomenological lagrangians. 2. Phys. Rev., 177:2247, 1969.

13. S, Weinberg. Phenomenological lagrangians. Physica, A96:327, 1979.

14. J. Gasser and H. Leutwyler. Chiral perturbation theory to one loop. Ann. Phys, 158:142, 1984.

15. J. Gasser and H. Leutwyler. Chiral perturbation theory: expansions in the mass of the strange quark. Nucl. Phys., 13 250:465, 1985.

16. J. Gasser and H. Leutwyler. Thermodynamics of chiral symmetry. Phys. Lett., Π’188:477, 1987.

17. H. Neuberger. A better way to measure in the linear a model. Phys. Rev. Lett., 60:889, 1988.

18. H. Neuberger. Soft pions in large boxes. Nucl. Phys., B300:180, 1988.

19. P. Hasenfratz and H. Leutwyler. Goldstone boson related finite size effects in field theory and critical phenomena with o (n) symmetry. Nucl. Phys., B343:241, 1990.

20. F. C. Hansen. Finite size effects in spontaneously broken su (n) xsu (n) theories. Nucl. Phys., B345:685, 1990.

21. F. C. Hansen and H. Leutwyler. Charge correlations and topological susceptibility in qcd. Nucl. Phys., B350:201, 1991.

22. W. Bietenholz. Goldstone bosons in a finite volume: The partition function to three loops. Helv. Phys. Acta, 66:633, 1993.

23. H. Leutwyler and A. Smilga. Spectrum of dirac operator and role of winding number in qcd. Phys. Rev., D46:5607, 1992.

24. T. Yoshie. Light liadron spectroscopy. Nucl. Phys. Proc. SuppL, 63:3, 1998.

25. S. Aoki and et. al. Quenched light hadron spectrum. Phys. Rev. Lett., 84:238,2000.

26. C. W. Bernard and M. F. L. Golterman. Chiral perturbation theory for the quenched approximation of qcd. Phys. Rev., D46:853, 1992.

27. P. H. Damgaard and K. Splittorff. Partially quenched chiral perturbation theory and the replica method. Phys. Rev., D62:54 509, 2000.

28. P. H. Damgaard, P. Hernandez, K. Jansen, M. Laine, and L. Lellouch. Finite-size sealing of vector and axial current correlators. Nucl. Phys., B656:226, 2003.

29. P. H. Damgaard, M. C. Diamantini, P. Hernandez, and K. Jansen. Finite-size scaling of meson propagators. Nucl. Phys., B629:445, 2002.

30. L. Ginsti, P. Hernandez, M. Laine, P. Weisz, and H. Wittig. Low-energy couplings of qcd from topological zero-mode wave functions. JHEP, 01:003, 2001.

31. P. H. Damgaard and S. M. Nishigaki. Universal spectral correlators and massive dirac operators. Nucl. Phys., B518:495, 1998.

32. P. H. Damgaard and S. M. Nishigaki. Distribution of the k-th smallest dirac operator eigenvalue. Phys. Rev., D63:45 012, 2001.

33. T. Wilke, T. Guhr, and T. Wettig. The microscopic spectrum of the QCD dirac operator with finite quark masses. Phys. Rev., D57:6486, 1998.

34. S. M. Nishigaki, P. H. Damgaard, and T. Wettig. Smallest dirac eigenvalue distribution from random matrix theory. Phys. Rev., D58:87 704, 1998. .

35. D. Diakonov and V. Yu. Petrov. Quark propagator and chiral condensate in an instanton vacuum. So v. Phys. JETP, 62:204, 1985.

36. E. V. Shuryak and J. J. M. Verbaarschot. Random matrix theory and spectral sum rules for the dirac operator in qcd. Nucl. Phys., A560:306, 1993.

37. E. V. Shuryak. The role of instantons in quantum chromodynamics. 1. physical vacuum. Nucl. Phys., B203.-93, 1982.

38. E. V. Shuryak. The role of instantons in quantum chromodynamics. 2. hadronic structure. Nucl. Phys., B203:116, 1982.

39. E. V. Shuryak. The role of instantons in quantum chromodynamics. 3. quark gluon plasma. Nucl. Phys., B203:140, 1982.

40. A. Smilga and J. J. M. Verbaarschot. Spectral sum rules and finite volume partition function in gauge theories with real and pseudoreal fennioris. Phys. Rev., D51:829, 1995.

41. М. Π•. Peskin. The alignment of the vacuum in theories of technicolor Nucl. Phys., B175:197, 1980.

42. S. Dimopoulos. Technicolored signatures. Nucl. Phys., B168:69, 1980.

43. Ya. I. Kogan, M. A. Shifman, and M. I. Vysotsky. Spontaneous breaking of chiral symmetry for real fermions and n=2 susy yang-mills theory Sov. J. Nucl. Phys., 42:318, 1985.

44. A. Altland and M. R. Zirnbauer. Field theory of the quantum kickec rotor. Phys. Rev. Lett., 77:4530, 1996.

45. M. A. Halasz and J. J. M. Verbaarschot. Effective lagrangians anc chiral random matrix theory. Phys. Rev., D52:2563, 1995.

46. G. Akemann, P. H. Darngaard, U. Magnea, and S. Nishigaki. Universality of random matrices in the microscopic limit and the dirac operatoi spectrum. Nucl. Phys., B487:721, 1997.

47. J. J. M. Verbaarschot and I. Zahed. Spectral density of the qcd dirac operator near zero virtuality. Phys. Rev. Lett., 70:3852, 1993. v.

48. J. J. M. Verbaarschot. The spectrum of the qcd dirac operator anc chiral random matrix theory: The threefold way. Phys. Rev. Lett 72:2531, 1994.

49. J. J. M. Verbaarschot. Spectral sum rules and selberg’s integral formula. Phys. Lett, 33 329:351, 1994.

50. J. J. M. Verbaarschot. The spectrum of the dirac operator near zerc virtuality for n© = 2 and chiral random matrix theory. Nucl. Phys. B426.-559, 1994.

51. J. J. M. Verbaarschot and I. Zahed. Random matrix theory and qcc in three-dimensions. Phys. Rev. Lett, 73:2288, 1994.

52. P. H. Darngaard, J. C. Osborn, D. Toublan, and J. J. M. Verbaarschot The microscopic spectral density of the QCD dirac operator. Nucl Phys., B547:305, 1999.

53. A. Bohr and B. Mottelson. Nxiclear Structure I. Benjamin, New York 1969.

54. K. G. Wilson. Confinement of quarks. Phys. Rev., D10:2445, 1974.

55. H. J. Rothe. Lattice Gauge Theories. World Scientific, Singapore, 1992.

56. S. Elitzur. Impossibility of spontaneously breaking local symmetries. Phys. Rev., D12:3978, 1975.

57. K. G. Wilson. in New Phenomena In Submiclear Physics, ed. A. Zichichi, (Plenum Press, New York), Part A (1977) 69.

58. H. B. Nielsen and M. Ninomiya. Absense of neutrinos on a lattice. 1. proof by liomotopy theory. Nucl. Phys., B185:20, 1981. Erratum Nucl. Phys. B195 (1982) 541. «.

59. H. B. Nielsen and M. Ninomiya. Absense of neutrinos on a lattice. 2. intuitive topological proof. Nucl. Phys., Π’193:173, 1981.

60. L. H. Karsten. Lattice fermions in euclidean space-time. Phys. Lett., Π’ 104:315, 1981.

61. J. Π’. Kogut and L. Susskind. Hamiltonian formulation of wilson’s lattice gauge theories. Phys. Rev., Dl 1:395, 1975.

62. L. Susskind. Lattice fermions. Phys. Rev., D16:3031, 1977.

63. J. B. Kogut. An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys., 51:659, 1979.

64. H. S. Sharatchandra, H. J. Thun, and P. Weisz. Susskind fermions on a euclidean lattice. Nucl. Phys., B192:205, 1981.

65. H. Kluberg-Stern, A. Morel, O. Napoly, and B. Petersson. Flavors of lagrangean susskind fermions. Nucl. Phys., B220:447, 1983.

66. M. F. L. Golterman and J. Smit. Selfenergy and flavor interpretation of staggered fermions. Nucl. Phys., B245:61, 1984.

67. B. Bunk, M. Delia Morte, K. Jansen, and F. Knechtli. The locality problem for two tastes of staggered fermions. 2004.

68. P. H. Ginsparg and K. G. Wilson. A remnant of chiral symmetry on the lattice. Phys. Rev., D25:2649, 1982.

69. M. Liischer. Exact chiral symmetry on the lattice and the ginsparg-wilson relation. Phys. Lett., B428:342, 1998.

70. P. Hasenfratz, V. Laliena, and F. Niedermayer. The index theorem in qcd with a finite cut-off. Phys. Lett., B427:125, 1998.

71. P. Hasenfratz. Lattice qcd without tuning, mixing and current renor-malization. Nucl. Phys., B525:401, 1998.

72. Y. Kikukawa and H. Neuberger. Overlap in odd dimensions. Nucl. Phys., B513:735, 1998.

73. H. Neuberger. Exactly rruissless quarks on the lattice. Phys. Lett., B417:141, 1998.

74. H. Neuberger. More about exactly massless quarks on the lattice. Phys. Lett., B427:353, 1998.

75. W. Bietenholz. Solutions of the ginsparg-wilson relation and improved domain wall fermions. Eur. Phys. J., CG:537, 1999.

76. W. Bietenholz, N. Eicker, A. Froimner, Th. Lippert, B. Medeke, K. Schilling, and G. Weuffen. Preconditioning of improved and 'perfect' fermion actions. Comput. Phys. Commun., 119:1, 1999.

77. K. Wilson and J. Kogut. The renormalization group and the e-expansion. Phys. i? ep., C12:75, 1974.

78. L. P. Kadanoff. Lectures on the application of renormalization group techniques to quarks and strings. Rev. Mod. Phys., 49:267, 1977.

79. W. Bietenholz and U. J. Wiese. Perfect lattice actions for quarks and gluons. Nucl. Phys., B464:319, 1996.

80. W. Bietenholz. Chiral symmetry, renormalization group and fixed points for lattice fermions. Prvc. of XIV Brazilian National Meeting on Particles and Fields, page 360.

81. W. Bietenholz, R. Brower, S. Chandrasekharan, and U. J. Wiese. Progress on perfect lattice actions for qcd. Nucl. Phys. Pmc. Suppi, 53:921,1997.

82. W. Bietenholz and U.J. Wiese. Perfect actions with chemical potential. Phys. Lett., B426:114, 1998.

83. K. Orginos, W. Bietenholz, R. Brower, S. Chandrasekharan, and U. J. Wiese. The perfect quark-gluon vertex function. Nucl. Phys. Proc. Suppl., 63:904, 1998.

84. M. Creutz. Monte carlo study of quantized su (2) gauge theory. Phys. Rev., D21:2308, 1980.

85. N. Metropolis, A. W. Rosenbluth, M. N. Eosenbluth, A. H. Teller, and E. Teller. J. Chem. Phys., 21:1087, 1953.

86. N. Cabibbo and E. Marinari. A new method for updating su (n) matrices in computer simulations of gauge theories. Phys. Lett., Bll9:387, 1982.

87. S. L. Adler. An overtaxation method for the monte carlo evaluation of the partition function for multiquadratic actions. Phys. Rev., D23:2901, 1981.

88. S. L. Adler. Overrelaxation algorithms for lattice field theories. Phys. Rev., D37:458, 1988.

89. F. R. Brown and T. J. Woch. Overrelaxed heat bath and metropolis algorithms for accelerating pure gauge monte carlo calculations. Phys. Rev. Lett., 58:2394, 1987.

90. M. Creutz. Overrelaxation and monte carlo simulation. Phys. Rev., D36:515, 1987.

91. P. Hernandez, K. Jansen, and M. Liischer. Locality properties of neu-berger's lattice dirac operator. Nucl. Phys., B552:363, 1999. ?

92. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery Numerical Recipes: The Art of Scientific Computing (2nd edition). Cambridge University Press, 1992.

93. P. Hernandez, K. Jansen, and L. Lellouch. Finite-size scaling of the quark condensate in quenched lattice qcd. Phys. Lett., B469:198, 1999.

94. W. Bietenholz. Approximate ginsparg-wikon fermions for qcd. Π Ρ‚Π΅. of the International Workshop on Non-Perturbative Methods and Lattice QCD Guangzhou (China), X.-Q. Luo and E.B. Gregory (exls.), page 3, 2000.

95. K. Jansen. Private communication.

96. W. Bietenholz. Convergence rate and locality of improved overlap fermions. Nucl. Phys., B644:223, 2002.

97. T. Blum and et al. Quenched lattice qcd with domain wall fermions and the chiral limit. Phys. Rev., D69:74 502, 2004.

98. J. van den Eshof, A. Frommer, Tli. Lippert, K. Schilling, and H. A. van der Vorst. Numerical methods for the qcd overlap operator, i: Sign-function and error bounds. Com, put. Phys. Cornmun., 146:203, 2002.

99. L. Giusti, C. Hoelbling, M. Liischer, and H. Wittig. Numerical techniques for lattice qcd in the eregime. Comput. Phys. Comrnun., 153:31, 2003.

100. G. Arnold, N. Cundy, J. van den Eshof, A. Frommer, S. Krieg, Th. Lip-pert, and K. Schafer. Numerical methods for the qcd overlap operator, ii: Optimal krylov subspace methods. 2003.

101. N. Cundy and et. al. Numerical methods for the qcd overlap operator, iii: Nested iterations. 2004.

102. T. Chiarappa, K. Jansen, K.-I. Nagai, M. Papinutto, L. Scorzato, A. Shmdler, C. Urbach, U. Wenger, and I. Wetzorke. Comparing iterative methods for overlap and twisted mass fermions. 2004.

103. W. Bietenholz, S. Capitani, T. Chiarappa, N. Christian, M. Hasen-buscli, K. Jansen, K.-I. Nagai, M. Papinutto, L. Scorzato, S. Shcheredin, A. Shindler, C. Urbach, Wenger U., and I. Wetzorke. Going chiral: overlap versus twisted mass fermions. 2004.

104. R. Sommer. A new way to set the energy scale in lattice gauge theories and its applications to the static force and aa in su (2) yang-mills theory. Nucl Phys., B411:839, 1994.

105. S. Necco and R. Sommer. The ΠΏ/ = 0 heavy quark potential from short: to intermediate distances. Nucl Phys., B622:328, 2002.

106. M. Guagnelli, R. Sommer, and H. Wittig. Precision computation of a low-energy reference scale in quenched lattice qcd. Nucl. Phys., B535:389, 1998.

107. P. H. Damgaard, U. M. Heller, R. Niclasen, arid K. Rummukainen. Looking for effects of topology in the dirac spectrum of staggered fermions. Nucl. Phys. Proc. Suppl., 83:197, 2000.

108. P. H. Damgaard, U. M. Heller, R. Niclasen, and K. Rummukainen. Staggered fermions and gauge field topology. Phys. Rev., D61:14 501, 2000.

109. S. Diirr and C. Hoelbling. Staggered versus overlap fermions: A study in the schwinger model with nf = 0,1,2. Phys. Rev., D69:34 503,2004.

110. E. Follana, A. Hart, and Π‘. Π’. Н. Davies. The index theorem and universality properties of the lowlying eigenvalues of improved staggered quarks. 2004.

111. K. Y. Wong and R. M. Woloshyn. Topology and staggered fennion action improvement. 2004.

112. F. Farchioni, I. Hip, and Π‘. B. Lang. Effects of topology in the dirac spectrum of staggered ferrnions. Phys. Lett., B471:58, 1999.

113. F. Farchioni, I. Hip, Π‘. B. Lang, and M. Wohlgenannt. Eigenvalue spectrum of massless dirac operators on the lattice. Nucl. Phys., B549:364, 1999.

114. B. A. Berg, U. M. Heller, H. Markum, R. Pullirsch, and W. Sakuler. Exact zero-modes of the compact qed dirac operator. Phys. Lett., B514:97, 2001.

115. R. G. Edwards, U. M. Heller, J. E. Kiskis, and R. Narayanan. Quark spectra, topology and random matrix theory. Phys. Rev. Lett., 82:41 884 191,1999.

116. P. Hasenfratz, S. Hauswirth, T. Jorg, F. Niedermayer, and K. Holland. Testing the fixed-point qcd action and the construction of chiral currents. Nucl. Phys., B643:280−320, 2002.

117. W. Bietenholz, K. Jansen, and S. Shcheredin. Spectral properties of the overlap dirac operator in qcd. JHEP, 07:033, 2003.

118. C. Lanczos. Solution of systems of linear equations by minimized iteration. J. Res. Nat. Bur. Stand., 49:33, 1952.

119. D. C. Sorensen. Implicit application of polynomial filters in a k-step arnoldi method. Siam J. Matrix Anal. Appi, 13:357, 1992.

120. F. Farchioni. Leutwyler-smilga sum rules for ginsparg-wilson lattice fermions. 1999.

121. S. Capitani, M. Gockeler, R. Horsley, P. E. L. Rakow, and G. Scliier-holz. Operator improvement for ginsparg-wilson fermions. Phys. Lett,. B4G8:150, 1999.

122. W. Bietenholz. Private notes.

123. P. H. Damgaard. Quenched finite volume logarithms. Nucl. Phys., B608:162, 2001.

124. J. J. M. Verbaarschot, and T. Wettig. Random matrix theory and chiral symmetry in qcd. Ann. Rev. Nucl. Pari. Set., 50:343, 2000.

125. L. Giusti, M. Liiseher, P. Weisz, and H. Wittig. Lattice qcd in the e-regime and random matrix theory. JHEP, 11:023, 2003.

126. E. Witten. Current algebra theorems for the w (l) 'goldstone boson'. Nucl. Phys., B156:269, 1979.

127. G. Veneziano. u (l) without instantons. Nucl. Phys., B159:213, 1979.

128. L. Giusti, G. C. Rossi, and M. Testa. Topological susceptibility in full qcd with ginsparg-wilson fermions. Phys. Lett, B587:157, 2004.

129. M. Liiseher. Topological effects in qcd and the problem of short-distance singularities. 2004.

130. L. Giusti, G. C. Rossi, M. Testa, and G. Veneziano. The ue (l) problem on the lattice with ginsparg-wilsorx fermions. Nucl. Phys., B628:234, 2002.

131. S. Chandrasekharan and U. J. Wiese. An introduction to chiral symmetry on the lattice. Prog. Part,. Nucl. Phys., 53:373, 2004.

132. L. Del Debbio and C. Pica. Topological susceptibility from the overlap. JHEP, 02:003, 2004.

133. L. Del Debbio, L. Giusti, and C. Pica. Topological susceptibility in the su (3) gauge theory. 2004.

134. W. Bietenholz, T. Chiarappa, K. Jansen, K.-I. Nagai, and S. Shcheredin. Axial correlation functions in the e-regirne: A numerical study with overlap fermions. JHEP, 02:023, 2004.

135. B. Bunk, K. Jansen, M. Liiseher, and H. Sinuna. Desy report (September 1994).

136. T. Kalkreuter and H. Siimna. An accelerated conjugate gradient algorithm to compute low lying eigenvalues: A study for the dirac operator ia su (2) lattice qcd. Comput. Phys. Commun., 93:33, 1996.

137. F. Berruto, N. Garron, C. Hoelbling, L. Lellouch, C. Rebbi, and N. Shoresh. Preliminary results from a simulation of quenched qcd with overlap fermions 011 a large lattice. Nucl. Phys. Proc. Suppl., 129:471, 2004.

138. L. Giusti, P. Hernandez, M. Laine, P. Weisz, and H. Wittig. Low-energy couplings of qcd from current correlators near the chiral limit. JHEP, 01:013, 2001.

139. S. A. Gottlieb, P. B. MacKenzie, H. B. Thacker, and D. Weingarten. Hadronic couplings constants in lattice gauge theory. Nucl. Phys., B263:704, 1986.

140. R. Gupta, G. Guralnik, G. Kilcup, A. Patel, S. R. Sharpe, and T. Warnock. The hadron spectrum on a 183×42 lattice. Phys. Rev., D36:2813, 1987.

141. H. Neuberger. Bounds on the wilson dirac operator. Phys. Rev., D61:85 015, 2000.

142. M. Liischer. Abelian chiral gauge theories on the lattice with exact gauge invariance. Nucl. Phys., B549:295, 1999.

143. M. Liischer. Weyl fermions on the lattice and the non-abelian gauge anomaly. Nucl. Phys., B568:162, 2000.

144. H. Fukaya and T. Onogi. Lattice study of the massive schwinger model — with theta term under liischer’s 'admissibility' condition. Phys. Rev., D68:74 503, 2003.

145. M. Creutz. Positivity and topology in lattice gauge theory. 2004.

146. S. Shcheredin, W. Bietenholz, K. Jansen, K.-I. Nagai, S. Necco, and L. Scorzato. Testing a topology conserving gauge action in qcd. 2004.

147. E.-M. Ilgenfritz, M. L. Laursen, G. Schierholz, M. Miiller-Preussker, and H. Schiller. First evidence for the existence of instantons in the quantized su (2) lattice vacuum. Nucl. Phys., B268:693, 1986.

148. E.-M. Ilgenfritz, Π’. V. Marteinyanov, M. Miiller-Preussker, S. Shcheredin, and A. I. Veselov. On the topological content of su (2) gauge fields below t©. Phys. Rev., D66.74 503, 2002.

149. K.-I. Nagai, W. Bietenholz, T. Chiarappa, K. Jansen, and S. Shclieredin. Simulations in the Π±-regime of chiral perturbation theory. Nucl. Phys. Proc. Stippl., 129:516, 2004.

150. P. Marenzoni, L. Pugnetti, and P. Rossi. Measure of autocorrelation times of local hybrid monte carlo algorithm for lattice qcd. Phys. Lett., B315:152, 1993.

151. R. T. Scalettar, D. J. Scalapino, and R. L. Sugar. New algorithm for the numerical simulation of fermions. Phys. Rev., B34:7911, 1986.

152. S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid monte carlo. Phys. Lett, B195:216, 1987.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ