Помощь в написании студенческих работ
Антистрессовый сервис

Моделирование механических свойств многослойных углеродных нанотрубок

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Теоретическая и практическая ценность работы, состоят в том, что разработанные в работе модели и методология квазидинамического моделирования для исследования напряженно-деформационного состояния и физических свойств многослойных углеродных нанотрубок в условиях внешнего радиационного и механического воздействия могут быть использованы для анализа широкого круга практически важных задач микро-и… Читать ещё >

Моделирование механических свойств многослойных углеродных нанотрубок (реферат, курсовая, диплом, контрольная)

Содержание

  • ГЛАВА 1. ОБЗОР СОСТОЯНИЯ СОВРЕМЕННЫХ ИССЛЕДОВАНИЙ
    • 1. 1. Структура углеродных нанотрубок
    • 1. 2. Синтез нанотрубок
    • 1. 3. Применение нанотрубок
    • 1. 4. Методы расчета, измерения и анализа механических и упругих свойств нанотрубок
  • ГЛАВА 2. МОДЕЛИ И МЕТОДЫ МОДЕЛИРОВАНИЯ МЕХАНИЧЕСКИХ СВОЙСТВ УГЛЕРОДНЫХ НАНОТРУБОК
    • 2. 1. Особенности применяемых моделей
      • 2. 1. 1. Квантово-механическая модель
      • 2. 1. 2. Континуальная модель
      • 2. 1. 3. Конечно-элементная модель
      • 2. 1. 4. Молекулярно динамическая модель
      • 2. 1. 5. Сравнительный анализ эффективности различных моделей
    • 2. 2. Разработка методологии квазидинамического моделирования
  • ГЛАВА 3. ИССЛЕДОВАНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ МНОГОСЛОЙНЫХ УГЛЕРОДНЫХ НАНОТРУБОК
    • 3. 1. Методические особенности и параметры моделирования
    • 3. 2. Особенности напряженно-деформационного состояния однослойных углеродных нанотрубок
    • 3. 3. Моделирование напряженно-деформационного состояния двухслойных углеродных нанотрубок
    • 3. 4. Моделирование напряженно-деформационного состояния трехслойных углеродных нанотрубок
  • ГЛАВА 4. ИССЛЕДОВАНИЕ ВЛИЯНИЯ ИОННОГО ОБЛУЧЕНИЯ НА МЕХАНИЧЕСКИЕ СВОЙСТВА МНОГОСЛОЙНЫХ УГЛЕРОДНЫХ НАНОТРУБОК
    • 4. 1. Методические особенности и параметры моделирования
    • 4. 2. Анализ влияния ионной бомбардировки на структуру многослойных углеродных нанотрубок
    • 4. 3. Исследование влияния радиационных дефектов многослойных нанотрубок на их механические характеристики

Имеющиеся экспериментальные данные свидетельствуют об уникальных механических свойствах углеродных нанотрубок. Их жесткость оказывается сравнимой с жесткостью алмаза, в то время как их прочность, на порядок превышает показатели, присущие лучшим сортам стали. Более того, при упругой и неупругой деформациях, углеродные нанотрубки могут поглощать большое количество энергии. Отмеченные физические-характеристики позволяют рассматривать углеродные нанотрубки в качестве перспективной основы для разработки новых высокопрочных, термоустойчивых и энергоемких композиционных материалов. Очевидны трудности экспериментального исследования углеродных нанотрубок. При теоретическом анализе, с учетом множественной природы взаимодействий атомов углеродной нанотрубки, исследователи вынуждены прибегать к компьютерному моделированию. Компьютерное моделирование в настоящее время уверенно завоевало статус самостоятельного метода исследования. Научный анализ многих проблем в самых разнообразных областях естествознания и техники проводится на основе хорошо апробированных компьютерных методах и разработанного программного обеспечения. Такие универсальные вычислительные инструменты, как метод конечных элементов и методы молекулярной динамики с успехом применяются для анализа физических свойств углеродных нанотрубок. В настоящее время углеродные нанотрубки удается синтезировать многими способами. Результаты недавних' экспериментальных, исследований позволили установить, что при использовании наиболее распространенных способов получения углеродных нанотрубок, например, на основе разрядно-дугового метода или метода химического осаждения из пара, образующиеся нанотрубки имеют преимущественно многослойную структуру. Однако, как показал анализ научной литературы, механические свойства многослойных углеродных нанотрубок изучены крайне недостаточно. С учетом того, что технология получения многослойных углеродных нанотрубок является наиболее дешевой и эффективной, их применение в качестве основы для сверхпрочных композиционных материалов представляется наиболее оправданным. С учетом сказанного, настоящая работа посвящена разработке моделей, методов и анализу средствами компьютерного моделирования механических свойств многослойных углеродных нанотрубок.

Целью диссертационной работы являлось исследование физических свойств многослойных углеродных нанотрубок в условиях внешнего механического и радиационного воздействия.

Для достижения поставленной цели необходимо было решить следующие задачи: разработать математическую модель и соответствующее программное обеспечение для анализа механических свойств многослойных углеродных нанотрубок;

— на основании компьютерного моделирования провести анализ основных механических характеристик многослойных углеродных нанотрубок и их зависимостей от геометрических и физических параметровисследовать влияние радиационных повреждений многослойных углеродных нанотрубок на их механические свойства и характеристики.

Научная новизна работы состоит в следующем:

— разработана новая квазидинамическая модель и методика моделирования физических свойств углеродных нанотрубок, позволяющая более чем на порядок снизить вычислительную сложность рассматриваемых задач анализа механических свойств углеродных нанотрубоксредствами компьютерного моделирования всесторонне изучены характеристики напряженно-деформационного состояния двухслойных и трехслойных углеродных нанотрубок, а также зависимости влияния на данные характеристики геометрических и физических параметров нанотрубки и особенностей воздействия внешней нагрузки;

— проведено исследование влияния радиационного облучения на формирование дефектной структуры многослойных углеродных нанотрубокполучены и исследованы зависимости механических характеристик многослойных углеродных нанотрубок от физических к геометрических параметров и доз радиационного облучения, типов и плотности образующихся радиационных дефектов.

Теоретическая и практическая ценность работы, состоят в том, что разработанные в работе модели и методология квазидинамического моделирования для исследования напряженно-деформационного состояния и физических свойств многослойных углеродных нанотрубок в условиях внешнего радиационного и механического воздействия могут быть использованы для анализа широкого круга практически важных задач микро-и наноматериаловедения. Поскольку многослойные углеродные нанотрубки обладают широким спектром возможностей практического применения, установленные в работе закономерности влияния радиационного облучения на механические характеристики и свойства многослойных углеродных нанотрубок с различными геометрическими параметрами и хиральностью ! могут быть использованы при разработке новых электронных и электромеханических нано приборов и устройств.

Достоверность результатов работы обусловлена корректной постановкой задачи, применением математически обоснованных методов ее решения, соответствием результатов известным экспериментальным данным.

На защиту выносятся следующие положения: квазидинамическая модель и методика компьютерного анализа напряженно-деформационного состояния многослойных углеродных нанотрубок и их механических характеристик в условиях различного внешнего радиационного и механического воздействиярезультаты исследования механических характеристик многослойных углеродных нанотрубок и их зависимостей от особенностей внешнего нагружения, геометрических и физических параметров многослойныхнанотрубокустановленные закономерности и механизмы возникновения бифуркационных трансформаций многослойных углеродных нанотрубок и особенности влияния на данные закономерности и механизмы физических и геометрических параметров и характеристик. установленные закономерности образования структурных нарушений и дефектов многослойных углеродных нанотрубок в результате радиационного облучения и зависимости механических характеристик многослойных нанотрубок от плотности радиационных дефектов различного типа.

Апробация результатов. Результаты диссертационной работы докладывались на конференциях:

1. Региональных научно-технических конференциях «Наукоемкие технологии в приборои машиностроении и развитие инновационной деятельности в вузе» (МГТУ им. Н. Э. Баумана, Москва 2008, 2009, 2010);

2. Всероссийских научно-технических конференциях «Наукоёмкие технологии, в приборои машиностроении и развитие инновационной деятельности в вузе» (МГТУ им. Н. Э. Баумана, Москва 2008, 2009, 2010);

3. Всероссийской школе-семинаре студентов, аспирантов и молодых ученых по направлению «Наноинженерия» (МГТУ им. Н. Э. Баумана, Москва 2008, 2010).

Публикации. Основные результаты, представленные в диссертации, опубликованы в 10 изданиях, в том числе в 1 журнале из Перечня ВАК РФ.

Личный вклад автора: с участием автора разработано программное обеспечение для квазидинамической модели компьютерного моделирования и анализа напряженно-деформационного состояния и физических свойств, многослойных углеродных нанотрубокпроведено исследование механических характеристик многослойных углеродных нанотрубок, а также-получены зависимости жесткости и прочности от геометрических и физических параметров нанотрубкив результате моделирования установлены зависимости бифуркационных трансформаций углеродных нанотрубок от их физических и геометрических параметровпроанализированы три области значений геометрических параметров двуслойных углеродныхнанотрубок, в которых бифуркационные процессы имеют качественные различия- .дано объяснение увеличения внутренней избыточной энергии многослойных углеродных нанотрубок в процессе бифуркационного переходаустановлены основные классы дефектов структуры углеродных нанотрубок, образующихся при ионной бомбардировке, и их влияние на разупрочнение нанотрубоквыполнен анализ всех результатов моделирования, сформулированы положения, выносимые на защиту.

Структура и объем диссертаций. Диссертация состоит из введения, четырех глав, общих выводов и списка цитируемой литературы. Работа изложена на 139 страницах текста, содержит 39 рисунков, 13 таблиц и 125 наименований цитируемой литературы.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ.

1. Разработана новая квазидинамическая модель и методика компьютерного моделирования и анализа напряженно-деформационного состояния и физических свойств многослойных углеродных нанотрубок в условиях внешнего механического и радиационного воздействия.

2. Впервые получены характеристики жесткости и прочности многослойных углеродных нанотрубок и исследованы их зависимости от особенностей внешнего нагружения, геометрических и физических параметров нанотрубки.

3. Установлены новые закономерности, связанные с механизмами возникновения бифуркационных трансформаций многослойных углеродных нанотрубок и влиянием на данные механизмы физических и геометрических параметров и характеристик.

4. Показано, что критический уровень деформации, при которой начинают проявляться бифуркационные изменения, регулируется соотношениями геометрических параметров многослойных нанотрубок, при этом независимо от их хиральности, имеется три характерные области значений геометрических параметров, в пределах которых бифуркационные процессы развиваются по различным сценариям.

5. Получены характеристики напряженно-деформационного и энергетического состояния многослойных углеродных нанотрубок и изучены их зависимости от внешних физических и внутренних геометрических параметров. Впервые установлено, что бифуркационным процессам в случае многослойных нанотрубок предшествует значительное увеличение внутренней избыточной энергии системыдано объяснение данному явлению, связанное с аккумуляцией внутренней энергии за счет межслойного взаимодействия.

6. Впервые, средствами компьютерного моделирования проведен анализ влияния радиационного облучения на структуру и физические характеристики многослойных углеродных нанотрубок. Установлены интервальные энергетические характеристики облучения, в пределах которых радиационное воздействие обуславливает образование различных дефектов структуры многослойных нанотрубок. Получены данные о влиянии на физические характеристики многослойных нанотрубок различных типов дефектов и зависимости разупрочнения многослойных нанотрубок от плотности различных дефектов и геометрических параметров многослойных нанотрубок.

Показать весь текст

Список литературы

  1. jima S. Helical microtubules of graphitic carbon // Nature. 1991. T.354. P. 56−65.
  2. Zettl A., Cumings J. Electromechanical properties of nanotubes // AIP Conf. Proc. 2000. V.544. P.526−551.
  3. Thostenson E.T., Ren Z., Chou T. Advances in the science and technology of carbon nanotubes and" their composites: a review // Composites Science’and'^ Technology. 2001. V.61. P. 1899−1912.
  4. Yao' N., Lordi V. Young’s modulus of single-walled carbon nanotubes //Journal of Applied Physics. 1998. V.84. P. 437−451.
  5. Poncharal P., Wang Z.L., Ugarte D. Electrostatic deflections and electromechanical resonances of carbon nanotubes // Science. 1999. V.283. P.1513−1532.
  6. Saito R., Dresselhaus G., Dresselhaus M.S. Physical properties of carbon nanotubes. London: Imperial College Press. 1998. 365 p.
  7. Reich S., Thomsen C., Maultzsch J. Carbon nanotubes: basic concepts and physical properties. Weinheim: Wiley-VCH. 2004. 467 p.
  8. Xiao J.R., Gama B.A., Gillespie J.W. An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes // International Journal of Solids and Structures. 2005. V.42. P. 3075−3092.
  9. Zhu Y., Ke C., Espinosa H. Experimental techniques for the mechanical characterization" of one-dimensional nanostructures // Experimental Mechanics. 2007. V.47. P. 7−24.
  10. A.B. Механические свойства углеродных наноструктур и материалов на их основе // УФН РАН. 2007. Т. 177, вып.З. С.249−274.
  11. П.Н. Углеродные нанотрубки. Строение, свойства, применения. М.: БИНОМ, 2006. 293 с.
  12. Saito R., Fujita М., Dresselhaus G., Dresselhaus M.S. Electronic Structure of
  13. Chiral Graphene Tubules//Appl. Phys. Lett. 1992. V.60. P. 1324−1335.
  14. Ebbesen T.W., Ajayan P.M. Large scale synthesis of carbon nanotubes //Nature. 1992. V.358. P. 220−245.
  15. Catalytic growth of- single-walled nanotubes by laser vaporization / T. Guo et al. // Chemical Physics Letters. 1995- V.243. P. 49−61.
  16. Hedberg L., Dong M.N., Jiao C.J. Air flow technique for large scale dispersion’and’alignment of carbon nanotubes on various substrates // Applied Physics Letters. 2005. V.86: P. 143 111−143 122″.
  17. Lau K., Chipara Ml, Ling H., Hui- D. On. the effective elastic moduli, of carbon nanotubes for nanocomposite structures // Composites Part B: Engineering. 2004. V.35. P. 95−101.. .
  18. Direct Synthesis of Long Single-Walled Carbon Nanotube Strands I H. W Zhu et al. // Science. 2002. V.296. P. 884−886.
  19. Dai L. Radiation chemistry for microfabrication of conjugated1 polymers and' carbon nanotubes // Radiation Physics and Chemistry. 2001. V.62. P. 55−68.
  20. Reinforcement of Polymers with Carbon Nanotubes: The Role of Nanotube Surface Area / M. Cadek et al. // Nano Letters. 2004. V.4. P. 353−356.
  21. Li C., Chou T. A structural mechanics approach, for the analysis of carbon nanotubes // International Journal of Solids and Structures. 2003. V.40. P. 2487−2499.
  22. Continuous Spinning of a Single-Walled Carbon Nanotube-Nylon Composite Fiber / J. Gao et al. // Journal of the American Chemical Society. 2005. V. 127. P. 3847−3854.
  23. Chang T., Gao H. Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model // Journal of the Mechanics and Physics of Solids. 2003. V.51. P. 1059−1074.
  24. Lau K., Chipara M., Ling H., Hui D. On the effective elastic moduli of carbon nanotubes for nanocomposite structures // Composites Part B: Engineering. 2004. V.35. P. 95−101.
  25. Lau K., Gu C., Hui D. A critical review on nanotube and nanotube/nanoclayrelated polymer composite materials // Composites Part B: Engineering. 2007. V.37. P. 425−436.
  26. Popov V.N., Doren V.E., Balkanski M. Elastic properties of single-walled carbon nanotubes // Physical Review B. 2000. V.61. P. 3078−3086.
  27. Elastic and mechanical properties of carbon nanotubes / C. Goze et al. // Synthetic Metals. 1999. V.103. P. 2500−2506.
  28. Super-tough carbon-nanotube fibres / A.B. Dalton et al. // Nature. 2003. V.423. P. 703−712.
  29. Moniruzzaman M., Winey K.I. Polymer Nanocomposites Containing Carbon Nanotubes //Macromolecules. 2006. V.39. P. 5194−5205.
  30. Fabrication of Carbon" Multiwall Nanotube/Polymer Composites by Shear Mixing / R. Andrews et al:. // Macromolecular Materials-and Engineering. 2002. V.287. P. 395−403.
  31. Nanoparticle networks reduce the flammability of polymer nanocomposites / T. Kashiwagi
  32. McCormac, J.C., Nelson, J.K., Structural analysis: a classical and1 matrix, methods approach. NY.: Addison-Wesley, 1997. 620 p.
  33. Tserpes K.I., Papanikos P. Finite element modeling of single-walled carbon nanotubes // Composites Part B: Engineering. 2005. V.36. P. 468−477.
  34. Elastic Properties of C and BxCyNz Composite Nanotubes / E. Hernandez et al. // Physical Review Letters. 1998. V.80. P. 4502−4514.
  35. Ab initio structural, elastic, and vibrational properties of carbon nanotubes / D.' Sanchez-Portal et al. // Physical Review B.1999. V.59.P. 12 678−12 684.
  36. Yakobson B.I., Brabec C.J., Bernholc J. Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response // Physical Review Letters. 1996. V.76.P. 2511−2527.
  37. Xin Z., Jianjun Z., Zhong O. Strain energy and Young’s modulus of singlewall carbon nanotubes calculated from electronic energy-band theory // Physical Review B. 2000. V.62. P. 13 692−13 701.
  38. Kudin K.N. Scuseria G.E., Yakobson B.I. C2 °F, BN, and C nanoshellelasticity from ab initio computations // Physical Review B. 2001. V.64. P. 235 406−235 411.
  39. Lu J.P. Elastic Properties of Carbon Nanotubes and Nanoropes // Physical Review Letters. 1997. V.79. P. 1297−1308.
  40. Jin Y., Yuan F.G. Simulation of elastic properties of single-walled carbon nanotubes // Composites Science and Technology. 2003. V.63. P. 1507−1515.
  41. An energy-equivalent model on-studying the mechanical’properties of singlewalled carbon nanotubes / Y. Wu et al. 7/ Thin-Walled Structures. 2006. V.44. P. 667−676.
  42. Ding F., Rosen A., Bolton K. The role of the catalytic particle temperature' gradient for SWNT growth from small particles // Chemical Physics Letters. 2004. V.393. P. 309−314.
  43. Theoretical STM signatures and transport properties of native defects in carbon nanotubes / D. Orlikowski" et al'. // Physical, Review B. 2000. V.61. P. 14 194−12 202.
  44. Structural and electronic properties of pentagon-heptagon pair defects in" carbon nanotubes / J.C. Charlier et al. // Physical Review B. 1998. V.53. P. 11 108−11 124.
  45. Saito Y.} Yoshikawa T. Interlayer spacings in carbon nanotubes // Physical Review. 1994. V.48. P. 11 434−11 441.
  46. Aligned1 carbon nanotube arrays formed’by cutting a polymer resin-nanotube composite /M.P. Ajayan et al. // Science. 1994. V.265. P. 1212−1219.
  47. Structural anisotropy of magnetically aligned single wall carbon nanotube films / B.W. Smith et al. // Applied’Physics Letters. 2000. V.77. P. 663−682.
  48. Cumings J., Zettl A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes // Science. 2000. V.289. P. 602−611.
  49. Crespi V.H. Smoothest Bearings: Interlayer Sliding in Multiwalled Carbon Nanotubes // Physical Review Letters. 2000. Y.85. P. 4727−4732.
  50. Rivera J.L., Mccabe C., Cummings P.T. Oscillatory behavior of doublewalled nanotubes under extension: A simple nanoscale damped spring // Nano1.tters. 2003. V.3. P. 1001−1014.
  51. Akita S., Nakayama Y. Impurity Photoconductivity and Impact Ionization of Shallow States in Semiconductors // Journal of Applied Physics. 2003. V.42. P. 3933−3941.'
  52. Schadler L.S., Giannaris S.C., Ajayan P.M. Load transfer in carbon nanotube epoxy composites // Applied Physics Letters. 1998. Vol.73. P. 3842−3851.
  53. Yu M.F., Lourie O., Dyer M.J. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load // Science. 2000: V.287. P. 637−645.
  54. Xia Z., Curtin W.A. Pullout forces and friction in multiwall carbon nanotubes // Physical Review. 2004. V.69B. P. 233 408−233 417.
  55. Krasheninnikov A.V., Nordlund K. Channeling of heavy ions, through multiwalled carbon nanotubes // Nuclear Instruments and Methods in Physics Research: 2004. V.216. P. 355−372.
  56. Tensile loading of ropes of singlewall carbon nanotubes and their mechanical properties / M.F. Yu et al. // Phys. Rev. Lett. 2000. V.84. P. 5552−5564.
  57. Induced stiffening of carbon nanotube bundles / D.S. Sammalkorpi et al. // Instruments and Methods in Physics Research. 2005. V.228. P. 142−154.
  58. Krasheninnikov A.V., Nordlund K., Keinonen J. Stopping of energetic ions in carbon nanotubes // Instruments and Methods in Physics Research. 2003. V.226.P. 18−33.
  59. Chen P., Wu X., Lin J. High H2Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures // Science. 1999.V.285. P. 91−112.
  60. Are carbon nanostructures an' efficient hydrogen storage medium / M. Hirscher et al. // Journal of Alloys and compounds. 2003. V.356. P. 433−439.
  61. Hydrogen storage in carbon nanostructures / M. Hirscher et al. // Journal of alloys and compounds. 2002. V.30. P. 654−661.
  62. Ajayan P.M., Zhou O.Z. Applications of carbon nanotubes // Carbon
  63. Nanotubes. 2001. V.80. P. 391−417.
  64. Electrochemical intercalation of lithium into multiwall carbon nanotubes / G. Maurin et al. // Chem. Phys. Lett. 1999. V.312. P. 14−22.
  65. Jin Z.X., Xu G.Q., Goh S.H. A preferentially ordered accumulation of bromine on multi-wall carbon nanotubes // Carbon. 2000. V.38. P. 1135−1141.
  66. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering/R.S. Lee et al. //Nature. 1998. V.388. P. 257−263.
  67. Lu J.P. Elastic Properties of Carbon Nanotubes and Nanoropes // Phys. Rev. Lett. 1997. V.79, № 7. P.1297−1300.
  68. Artcho E., Soler J.M. Ab initio structural, elastic, and vibrational properties of carbon nanotubes // Phys. Rev. B. 1999. V.59. P. 12 678−12 688.
  69. Ru C.Q. Effective bending stiffness of carbon nanotubes // Phys. Rev. B. 2000. V.62. P.9973−9976.
  70. Elastic and mechanical properties of carbon nanotubes / C. Goze et al. // Synthetic Metals. 1999. V.103. P.2500−2527.
  71. Wang X.Y., Wang X. Numerical simulation for bending modulus of carbon nanotubes and some explanations for experiment // Composites: Part B. 2004. V.35. P.79−86.
  72. Superplastic carbon nanotubes / J.Y. Huang et al. // Nature. 2006. V.439, № 1. P. 281−308.
  73. Mechanical properties of carbon nanotubes / J.P. Salvetat et al. // Appl. Phys. A. 1999. V.69. P. 255−260.
  74. Suitability of carbon nanotubes grown by chemical vapor deposition for electrical devicesi / B. Babic et al. // Nano. Lett. 2003. V.3, № 11. P. 1577−1592.
  75. Waters J.F. Shell Buckling of Imperfect Multiwalled Carbon Nanotubes -Experiments and Analysis // Appl. Phys. Lett. 2004. V.85. P. 1787−1796.
  76. Heyd R., Charlier A., McRae E. Uniaxial-stress effects on the electronic properties of carbon nanotubes // Phys. Rev. 1997. V.55B, № 11. P. 6820−6824.
  77. Electrical and mechanical properties of distorted carbon nanotubes / A. Rochefort et al. // Phys. Rev. 1999. V.60 B., № 19. P. 13 824−13 830.
  78. Mechanical properties and electronic behavior of carbon nanotubes / M. B'. Nardelli et al. // Carbon. 2000. V.38, № 11−12. P. 1703−1711.
  79. Effect of rehybridization on the electronic structure of single-walled carbon nanotubes / M.A. Hamon et al. // J. Am. Chem. Soc. 2001. V.123, № 45. P. 11 292−11 293.
  80. Kasahara Y., Tamura R., Tsukada M. Structure and electronic states of capped carbon nanotubes by a tight-binding approach // Phys. Rev. 2003. V.67B, № 11. P. 115 419.
  81. Harik V.M. Ranges of applicability for the continuum-beam model in the constitutive analysis of carbon nanotubes: nanotubes or nano-beams? VA.: Hampton. 2001. 36 pi
  82. Ru C.Q. Axially compressed buckling of a doublewalled carbon nanotube embedded in an* elastic medium // J. Mech. Phys. Solids. 2001. V.49. P. 1265−1279.
  83. Equivalent-continuum modeling of nano-structured materials /G. Odegard et al. // Composites Science and Technology. 2002. Y.62. P. 1869−1880.
  84. Gao X.L., Li K. Finite deformation continuum model for single-walled carbon nanotubes // Inter. J. of Solids and Structures. 2003. V.40, № 26. P. 7329−7337.
  85. Wang Q., Varadan V.R. Stability analysis of carbon nanotubes via continuum models // Smart Mater. Struct. 2005. V.14. P. 281−299.
  86. Maruyama S. Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling // Phys. Rev. 2006. V.74B. P. 254 031−254 039.
  87. Ding F., Bolton K., Rosen A. Molecular dynamics study of bamboo-like carbon nanotube nucleation // J. of Electronic Materials. 2006. V.35, № 2.1. P. 207−210.
  88. Molecular dynamics study of carbon nanotube oscillator on gold surface / J.W. Kang et al. // Molecular Simulation. 2006. V.32, № 5. P. 363−368.
  89. Jun C.M., Chun L.Y., Zhu L. H: Molecular dynamics simulation on mechanical property of carbon nanotube torsional deformation // Chinese Phys. 2006. V. l-5. P. 2676−2681.
  90. Zang J., Palacios O., Liu- F. MD Simulation of structural and mechanical transformation of single-walled carbon nanotubes under pressure // Commun. Comput. Phys. 2007. V.8, № 3. P. 451−465.
  91. Krasheninnikov' A.V., Nordlund K: Channeling of heavy ions through multiwalled carbon nanotubes // Nuclear Instruments and Methods in Physics Research. 2004. V. 103B. P.355−366.
  92. Banhart F. Irradiation effects in carbon nanostructures // Reports Progress Physics. 1999. V.62. P. 1181−1194.
  93. Coalescence of single-walled' carbon nanotubes / M. Terrones et al. // Science. 2000. V.288. P. 1226−1231.
  94. Ziegler J.F., Biersack J.P., Littmark U. In the stopping and range of ions in matter. N.-Y.: Pergamon. 1995. 437 p.
  95. Ньи Ньи Лайнг, Рыбкин C.B. Методы расчета, измерения и анализа механических свойств углеродных нанотрубок // Наноинженерия. Сборник трудов 1-ой Всероссийской школы-семинара по направлению «Наноинженерия». М., 2008. С. 243−258.
  96. Ньи Ньи Лайнг, Говоров Д. С., Гинзгеймер С. А. Молекулярно динамическое моделирование деформирования двухслойных нанотрубок // Наноинженерия. Сборник трудов 1-ой Всероссийской школы-семинара по направлению «Наноинженерия». М., 2008. С. 339−342.
  97. Ю.С., Ньи Ньи Лайнг, Логинов Б.М. Квазидинамическая модель моделирования механических свойств углеродных нанотрубок // Труды МГТУ. М., 2009. Т.598. Методы исследования и проектирования сложных технических систем. С. 19−33.
  98. О., Сох D.M., Wagner H.D. Buckling and collapse of embedded carbon nanotubes // Phys. Rev. Lett. 1998. V.81. P. 1638−1641.
  99. Srivastava D., Wei C., Cho КГ Nanomechanics of carbon nanotubes // Applied Mechanics Reviews. 2003. V.56. P. 215−230.
  100. Computational analysis of effect of single-walled carbon nanotube / J. Gou et al. // Computational Engineering. 2005. V.36. P. 524−533.
  101. Research directions in computational mechanics / J. Oden et al. // Computer Methods in Applied Mechanics and Engineering. 2003. Y.192. P. 913−922.
  102. Yakobson В., Brabec C., Bernholc J. Nanomechanics of carbon nanotubes: instabilities beyond linear response // Physical Review Letters. 1996. V.76. P.12 511−2514.
  103. Wagner H., Nairn J. Residual thermal stresses in three concentric transversely isotropic cylinders: application to thermoplastic-matrix containing a transcrystalline interphase // Science and Technology. 1997. V.57. P. 1289−1302.
  104. Benveniste Y., Miloh T. Imperfect soft and, stiff interfaces in two-dimensional elasticity // Mechanics of Materials. 2001. V.33. P. 309−323.
  105. Tserpes K., Papanikos P. Finite element modeling of single-walled carbon nanotubes // Computational Engineering. 2005. V.36. P. 468−477.
  106. Xu Y., Ray G., Abdel-Magid B. Thermal behavior of single-walled carbon' nanotube // Applied Science and Manufacturing. 2006. V.37. P. 114−121.
  107. Ньи Ньи Лайнг. Гинзгеймер С. А. Наноскопическое исследование деформации многослойных углеродных нанотрубок // Наноинженерия. Сборник трудов 3-ой Всероссийской школы-семинара по направлению «Наноинженерия». М., 2010. С. 360−372.
  108. Влияние топологических и радиационных дефектов на упругие характеристики углеродных нанотрубок / Ньи Ньи Лайнг и др. // Наукоемкие технологии. 2011. № 9. С. 23−37.
Заполнить форму текущей работой