Помощь в написании студенческих работ
Антистрессовый сервис

Полимеризация и сополимеризация этилена под действием растворимых и гетерогенизированных катализаторов на основе (C5H5) 4Zr и (C5H5) 4Ti

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Таким образом, в процессе выполнения работы были разработаны оригинальные высокоактивные металлоценовые каталитические системы полимеризации и сополимеризации этилена и изучен механизм их действия. Простота синтеза компонентов каталитических систем, возможность регулирования свойств продуктов в широких пределах и созданная теоретическая база, необходимая для управления процессом полимеризации… Читать ещё >

Полимеризация и сополимеризация этилена под действием растворимых и гетерогенизированных катализаторов на основе (C5H5) 4Zr и (C5H5) 4Ti (реферат, курсовая, диплом, контрольная)

Содержание

  • Список сокращений и условных обозначений
  • Глава 1. Металлокомплексный катализ полимеризации олефинов
    • 1. Классификация катализаторов полимеризации олефинов
      • 1. 1. Гомогенные катализаторы
        • 1. 1. 1. Металлоценовые катализаторы
        • 1. 1. 2. Постметаллоценовые катализаторы
      • 1. 2. Гетерогенные катализаторы
      • 1. 3. Коллоидно-дисперсные катализаторы
    • 2. Носители для катализаторов полимеризации этилена
    • 3. С окатал изаторы для металлоценовых каталитических систем 43 полимеризации олефинов
    • 4. Механизм полимеризации олефинов под действием КМК
    • 5. Регулирование физико-химических свойств полиэтиленов, получаемых 58 под действием КМК
  • Глава 2. Методика проведения экспериментов
    • 1. Очистка применяемых веществ и их характеристики
    • 2. Синтез металлоценовых компонентов катализаторов
    • 3. Методика проведения полимеризации и сополимеризации этилена
    • 4. Исследование свойств полимеров и сополимеров
    • 5. Исследования взаимодействий между компонентами каталитических 67 систем
  • Глава 3. Полимеризация этилена под действием растворимых 69 каталитических систем на основе (C5H5)4Zr, (С^Н^ТЧ и МАО
    • 1. Кинетические закономерности полимеризации этилена под действием 69 растворимой каталитической системы (С5Н5^г — МАО
    • 2. Влияние давления этилена
    • 3. Влияние добавок водорода
    • 4. Влияние времени форконгакта компонентов катализатора
    • 5. Влияние добавок МОС на характеристики каталитической системы 83 (СдНд^Г-МАО
    • 6. Влияние добавок МОС на характеристики каталитической системы 86 (C5H5)4Ti-MAO
    • 7. Олигомеризация высших а-олефинов под действием растворимой 89 каталитической системы (C5H5)4Zr — МАО
    • 8. Сополимеризация этилена с а-олефинами под действием растворимой 93 каталитической системы (C5H5)4Zr-MAO
  • Глава 4. Полимеризация и сополимеризация этилена с а-олефинами под 97 действием гетерогенизированных каталитических систем на основе (C5H5)4Zr и МАО
    • 1. Гетерогенизированные катализаторы на основе (C5H5)4Zr
    • 2. Бифункциональные системы димеризации-сополимеризации этилена 106 на основе Ti (Oi-C4H9)4 и (C5H5)4Zr
  • Глава 5. Изучение механизма полимеризации олефинов под действием 115 каталитических систем, включающих (C5H5)4Zr, (C5H5)4Ti и МАО
    • 1. Характеристика основных стадий полимеризации на основе 115 кинетических наблюдений
    • 2. Спектроскопические исследования
      • 2. 1. Спектры системы Cp4Zr — МАО в видимой области
      • 2. 2. ЯМР-спектры
      • 2. 3. ЭПР-спектры
    • 3. Изучение взаимодействия (C5H5)4Zr и (C5H5)4Ti с МАО методом 129 газоволюмометрии
  • Выводы

Актуальность работы.

Полиэтилен (ПЭ) высокой, средней и низкой плотности является крупнотоннажным продуктом нефтепереработки. Производство его в мировом масштабе составляет 71 млн. т. в год [1]. Высокий спрос на полиэтиленовые пластики обусловлен их уникальными физико-химическими свойствами, позволяющими применять их в качестве изоляционных материалов, высокопрочных материалов для трубопроводов, а также, благодаря отсутствию токсичности, в качестве упаковочных материалов [2].

Одними из наиболее активных и производительных катализа! оров, применяемых в настоящее время для получения различных марок ПЭ, являются металлоценовые катализаторы (МЦК), представляющие собой комбинацию металлоценового производного переходного металла IV группы (Тц 7л, П^ и алюминийорганического соединения (обычно полиметилалюмоксапа (МАО)). Эти катализаторы позволяют получать широкий ассортимент марок ПЭ с возможностью гибкого регулирования их свойств. Однако технологии получения таких катализаторов порой очень сложны и требуют использования высокотехнологичного оборудования.

Тетрациклопентадиенилцирконий является одним из наиболее легко синтезируемых металлоценовых производных циркония. По данным рентгеноструктурного анализа [3] в молекуле (С5Н5)47г три С5Н5-группы связаны с атомом циркония по г|5-типу (7г-связи Zr-C), а одна — по т|'-типу (а-связь 2г-С). В связи с таким строением, (С5Н5)47г в исходном состоянии можно рассматривать как заготовку активного центра полимеризации, содержащую активную по отношению к мономерам о-^г-С-связь и стабильную группировку (7и-С5Н5^г. Стабильность трис-71-циютопентадиенильной группировки следует из свойств аналогичных химически стабильных металлоценов (СргРе, СргТлСЬ, Cp2ZrCl2 и др.) и подтверждается экспериментальными данными [4]. Выбор данного комплекса в качестве каталитического предшественника упрощает задачи выяснения строения активного центра и стадийного механизма полимеризации. В частности, наличие в предшественниках активных центров а^г-С-связи исключает необходимость алкилировапия металлоцена и тем самым упрощает стадийный механизм процесса.

Объектами исследований являлись гомогенные и гетерогенизированные системы, включающие (С5Н5)42г и (С5Н5)4Т1, МАО и различные модифицирующие добавки, а также мономеры — этилен и гексен-1.

Целями настоящей работы являлись: 1) разработка новых высокоактивных каталитических систем полимеризации этилена на основе Ср42г для получения полиэтиленов низкой, средней и высокой плотности- 11) разработка способов регулирования свойств полиэтиленов, получаемых под действием упомянутых катализаторов- 111) изучение механизма взаимодействий между компонентами каталитических систем (С5Н5)42г, (С5Н5)4Т1 и МАО в отсутствие и в присутствии олефинового мономера.

В соответствии с целями работы были поставлены следующие задачи:

1. Изучить влияние различных факторов (концентрации и мольного соотношения компонентов катализатора, концентрации мономера, природы среды, носителя и других) на кинетические закономерности протекания полимеризации этилена под действием растворимых и гетерогеиизированных МЦК на основе (С5Н5)4гг.

2. Исследовать влияние различных модифицирующих добавок (водорода, металлалкилов, высших а-олефинов) на кинетические закономерности протекания полимеризации под действием указанных в п. Г систем и свойства получаемых полиэтиленов.

3. Выяснить возможность создания катализаторов, позволяющих получать линейные полиэтилены низкой плотности и изучить свойства продуктов, образующихся под действием этих систем.

4. Исследовать взаимодействия между компонентами каталитических систем (С5Н5)^г, (С5Н5)4Т1 и МАО в отсутствие и в присутствии олефинового мономера с применением комплекса физико-химических методов.

Научная новизна результатов, выносимых на защиту, состоит в следующем:

1. Разработаны высокоактивные и оригинальные высокопроизводительные растворимые и гетерогенизированные металлоценовые катализаторы полимеризации этилена в полиэтилены высокой, средней и низкой плотности на основе (7Г-С5Н5^Г (0-С5Н5) и (я-С5Н5)2Тл (а-С5Н5)2. Разработаны простые и доступные методы получения компонентов упомянутых катализаторов.

2. Изучено влияние различных факторов (состава каталитической системы, температуры и давления этилена) на кинетические закономерности полимеризации этилена и реакции, проходящие в металлоценовых каталитических системах полимеризации на основе (л-СзНзХ^^о-СзНз) и (л> С5П5)2Т1(с-С5Н5)2 в модельных условиях.

3. Показано, что под действием высокоактивных растворимых и гетерогенизированных металлоценовых каталитических систем на основе (к-С5Н5)3/ф-С5Н5) образуются полиэтилены высокой, средней и низкой плотности. Аналогичные системы на основе (тс-С^Н^Т^а-Сз^^ обладают существенно меньшей активностью.

4. Выявлен характер влияния различных факторов на строение и свойства (молекулярно-массовые, насцеитные, реологические и деформационно-прочностные) полученных полиэтиленов высокой, средней и низкой плотности.

5. Предложен механизм реакций, протекающих при взаимодействии компонентов каталитических систем (7г-С5Н5^г (а-С5Н5) и (л-С5Н5)2ТХа-С51 Т5)2.

Практическая значимость.

Полученные данные могут быть использованы для разработки научных основ нового процесса получения полиэтиленов высокой, средней и низкой плотности в технологически благоприятных условиях с использованием растворимых и гетерогенизированных катализаторов на основе (С5Н5^г. Личный вклад автора.

Работы по изучению кинетических закономерностей полимеризации и сополимеризации этилена проведены автором совместно с Ю. И. Злобинским и лично. Синтез катализаторов и исследование газовыделения в каталитических системах проведены совместно с к.х.н. Л. Н. Руссиян. Спектроскопические исследования каталитических систем и полимеров выполнены совместно с к.х.н. Е. И. Кнерельман (ЦУ-Х^ и ИК спектроскопия) и автором лично (ЭПР спектроскопия). Автор принимал непосредственное участие в формулировке задач исследования, интерпретации экспериментальных данных и их обсуждении.

Апробация работы.

Результаты, изложенные в диссертационной работе, докладывались и обсуждались на Российских и Международных конференциях: XVITI Менделеевском съезде по общей и прикладной химии, Москва, 23−28 сентября 2007 г., Российской конференции «Современное состояние и тенденции развития металлорганического катализа полимеризации олефинов», Черноголовка, 19−21 мая 2008 г., VI Открытой украинской конференции молодых ученых по высокомолекулярным соединениям «ВМС-2008», Киев, 30 сентября — 3 октября 2008 г., XXIV Международная Чугаевская конференция по координационной химии Санкт-Петербург, 15−19 июня 2009 г., VIII Международной конференции «Механизмы каталитических реакций», Новосибирск, 29 июня — 2 июля 2009 г., Балтийском полимерном симпозиуме — 2010, Литва, Паланга, 8−11 сентября 2010 г.

Работа выполнена по тематическим планам ИПХФ РАН при финансовой поддержке ОХНМ РАН (программа № 1, 2007 — 2010 г.), Российского Фонда Фундаментальных Исследований (проект № 08−03−89) и Федерального агентства по пауке и инновациям (контракт № 02.740.11.0646 от 29 марта 2010 г.) Публикации.

По теме диссертации опубликовано 4 статьи в журналах, рекомендованных ВАК и 6 тезисов докладов на конференциях. Отправлена заявка на получение патента РФ.

1. Матковский П. Е. Полимеризация этилена под действием растворимой каталитической системы (C5H5)4Zr — метилалюмоксан / П. Е. Матковский, В. Д. Махаев, С. М. Алдошин, JI.H. Руссиян, Г. П. Старцева, Ю. И. Злобинский, И. В. Седов // Высокомолек. соед. сер. Б. — 2007. — т. 49. — № 4. — С. 723 — 729.

2. Матковский П. Е. Полимеризация этилена и сополимеризация его с гексеном-1 под действием нанесенных металлоценовых катализаторов на основе (C5H5)4Zr и мегилалюмоксана / П. Е. Матковский, В. Д. Махаев, С. М. Алдошин, Л. Н. Руссиян, Г. П. Старцева, Ю. И. Злобинский, Л. Н. Распопов, И. В. Седов // Высокомолек. соед. сер. А. — 2007. — т. 49. — № 5. — С. 771 — 778.

3. Седов И. В. Полимеризация этилена под действием металлоценовых катализаторов (C5H5)4Mt — МАО (Mt = Ti, Zr) в присутствии металлоорганических модификаторов / И. В. Седов, П. Е. Матковский, JI.H. Руссиян, В. П. Божок, Е.О. Перепелицина//Высокомолек. соед. сер. Б. -2010. — т. 52. -№ 2. — С. 309 — 313.

4. Лукова Г. В. Фотофизические, электронные и каталитические свойства тетрациклопентадиенилциркония / Г. В. Лукова, В. П. Васильев, A.A. Милов, И. В. Седов, В. А. Смирнов, Л. Н. Руссиян, П. Е. Матковский // Доклады Академии Наук. — 2010. — т. 434. — № 5. — С. 648 — 650.

5. П. Е. Матковский, Л. Н. Руссиян, И. В. Седов Катализатор для получения сополимеров этилена с бутеном-1, способ его приготовления, способ получения сополимеров этилена с использованием этого катализатора и способ регулирования молекулярной массы, разветвленности, кристалличности и плотности полимеров. / Заявка на патент РФ № 2010 114 881 от 15.04.2010.

6. Особенности полимеризации и сополимеризации этилена под действием растворимой и гетерогенизированных каталитических систем (C5H5)4Zrполиметилалюмоксан / И. В. Седов, П. Е. Матковский, С. М. Алдошин, В. Д. Махаев, Л. Н. Руссиян, Г. П. Старцева, Ю. И. Злобинский, Л. Н. Распопов // XVIII Менделеевский съезд по общей и прикладной химии: г. Москва, — 23−28 сентября 2007. Тезисы докладов. — Т. 3. — С. 436.

7. Получение тетрациклопентадиенилциркония и его взаимодействие с метилалюмоксаном в отсутствие мономера. / И. В. Седов, П. Е. Матковский, Л. Н. Руссиян, В. Д. Махаев, Е. И. Кнерельман, Г. П. Старцева // Российская конференция «Современное состояние и тенденции развития металлорганического катализа полимеризации олефинов»: г. Черноголовка, — 19−21 мая 2008. Тезисы докладов. -С. 36.

8. Полимеризация и сополимеризация этилена под действием катализаторов на основе (C5H5)4Zr и (C5H5)4Ti. / И. В. Седов, П. Е. Матковский, Л. Н. Руссиян, Е. И. Кнерельман.// VI Open Ukrainian conference of young scientists on polymer science «VMS-2008»: Kyiv, Ukraine, — September 30 — October 3 2008. Book of Abstracts. — P. 54.

9. Изучение металлоценовых каталитических систем полимеризации олефинов методом ЭПР / И. В. Седов. П. Е. Матковский, Л. Н. Руссиян // XXIV Международная Чугаевская конференция по координационной химии: г. Санкт-Петербург- 15−19 июня 2009. Тезисы докладов. — С. 564.

10. Modification of the catalytic systems (C5H5)4Zr — MAO and (C5H5)4Ti — MAO by metalalkyls / I.V. Sedov, L.N. Russiyan, P.E. Matkovskiy // VIII International conference «Mechanisms of catalytic reactions»: Novosibirsk — June 29 — July 2 2009. Book of Abstracts. — V. 2. — P. 96−97.

11.Hexene polymerization with Cp4Zr based catalytic systems / I.V. Sedov, P.E. Matkovskiy, V. Ya. Churkina, L.N. Russiyan // Baltic polymer symposium: Palanga, Lithuania — September 8−11 2010. Programme and abstracts. — P. 20.

Объем и структура диссертации.

Диссертация состоит из введения, пяти глав, заключения, выводов и списка цитируемой литературы. Объем работы составляет 161 страницу, включая 40 рисунков и 26 таблиц. Список цитируемой литературы включает 257 наименований.

Выводы по работе:

1. Предложены оригинальные двустадийные методы синтеза тетрациклопентадиенильных производных Zr и Т1, отличающиеся простотой и безопасностью исполнения. Разработаны оригинальные растворимые и гетерогенизированные каталитические системы полимеризации и сополимеризации этилена на основе (С5Н5)47г, (С5Н5)4Т1, Т1(ОВи)4 и МАО, позволяющие получать полиэтилены низкой, средней и высокой плотности с широким спектром физических свойств.

2. Изучено влияние различных факторов (концентрации, состава и способа приготовления катализатора, давления, природы растворителя, добавок водорода и МОС непереходных металлов И-1У группы) на процесс полимеризации этилена под действием разработанных каталитических систем. Разработаны методы регулирования свойств (молекулярной массы, разветвленности, степени кристалличности, насцентных и реологических свойств) полимеров и сополимеров этилена.

3. Показано, что использование МОС в качестве добавок к каталитическим системам позволяет существенно снизить расход труднодоступного и * дорогостоящего компонента каталитической системы — МАО.

4. С помощью комплекса физико-химических методов получена информация о различных стадиях взаимодействия между компонентами каталитических систем (С5Н5)47г, (С5Н5)4ГП и МАО в отсутствие и в присутствии мономера. В результате анализа полученных данных и сопоставления их с кинетическими закономерностями полимеризации предложен механизм наблюдавшихся реакций.

Таким образом, в процессе выполнения работы были разработаны оригинальные высокоактивные металлоценовые каталитические системы полимеризации и сополимеризации этилена и изучен механизм их действия. Простота синтеза компонентов каталитических систем, возможность регулирования свойств продуктов в широких пределах и созданная теоретическая база, необходимая для управления процессом полимеризации позволяют утверждать о перспективности применения разработанных каталитических систем в промышленных процессах получения полиэтиленов низкой, средней и высокой плотности.

Показать весь текст

Список литературы

  1. Chum P. S. Olefin polymer technologies History and recent progress at The Dow Chemical Company. / P. S. Chum, K.W. Swogger // Prog. Polym. Sei. — 2008. V. 33 -No 8.-P. 797−819
  2. McLain V.C. Final report on the safety assessment of Polyethylene. / V.C. McLain // International Journal of Toxicology. — 2007. — V. 26. — P. 115−127
  3. Rogers R.D. Crystal and molecular structure of tetra (cyclopentadienyl)zirconium. / R.D. Rogers, R.W. Bynum, J.L. Atwood. II J. Am. Chem. Soc. 1978. -V. 100. — No 16.-P. 5238−5239
  4. H. «Living Polymers» on Polymerization with Extremely Productive Ziegler Catalysts. / H. Sinn, W. Kaminsky, II.J.Vollmer, R. Woldt // Angew. Chem. Int. Ed. Engl. 1980. — V.19.-No 5. -P.390−392 .
  5. Seymour R.B. History of Polyolcfins / R.B. Seymour // «Advances in Polyolefins. The World’s Most Widely Used Polymers.» Eds. R.B. Seymour, T. Cheng, New York: Plenum Press. 1969. — P. 9 — 57
  6. Weckhuysen B.M. Olefin polymerization over supported chromium oxide catalysts. / B.M. Weckhuysen, R.A. Schoonheydt// Catal. Today. 1999. -V. 51. — No 2. — P. 215 -221
  7. Ziegler K. Polymerisation von Athylen und anderen Olefinen. / К. Ziegler, E. Holzkamp, H. Breil, H. Martin II Angew. Chem. 1955. — V. 67. — No 16. — P. 426 -426
  8. Natta G. Kristallstruktur des isotaktischen polystyrols. / G. Natta, P. Corradini // Makromol. Chem. 1955. — V. 16. — No 1. — P. 77 — 80
  9. Resconi L. Olefin polymerizations with group IV metal catalysts/L. Resconi, J.C. Chadwick, L. Cavallo //in: Comprehensive Organometallic Chemistry III, Amsterdam: Elsevier. 2007. — V. 4. — P. 1037 — 1038
  10. T.Keii. «Kinetics of Ziegler-Natta Polymerization.» London: Chapman&Hall. -1972.-262 P.
  11. Carrick W.L. Mechanism of ethylene polymerization with vanadium catalysts. / W.L. Carrick // J. Am. Chem. Soc. 1958. — V. 80. — No 23. — P. 6455 — 6456
  12. Н.М. Полимеризация на комплексных металлоорганических катализаторах. / Н. М. Чирков, П. Е. Матковский, Ф. С. Дьячковский. // М.: Химия. -1976.-С.202−205
  13. Hagen Н. Homogeneous vanadium-based catalysts for the Ziegler-Natta polymerization of alpha-olefins. / H. Hagen, J. Boersma, G. van Koten // Chem. Soc. Rev. 2002. — V. 31. — P. 357 — 364
  14. Witte P.T. Linked Cyclopentadienyl-Amide Complexes of Divalent, Trivalent, and Tetravalent Vanadium: A Vanadium «Constrained Geometry Catalyst / P.T. Witte, A. Meetsma, B. Hessen // Organometallics. 1999. — V. 18. — No 16. — P. 2944 — 2946
  15. Milione S. Synthesis of alpha-diimine V (III) complexes and their role as ethylene polymerisation catalysts. / S. Milione, G. Cavallo, C. Tedesco, A. Grassi // J. Chem. Soc. Dalton Trans. 2002. — P. 1839 — 1846
  16. Natta G. A crystallazable organometallic complex containing titanium and aluminum. / G. Natta, P. Pino, G. Mazzanti, U. Giannini // J. Am. Chem. Soc. 1957. -V. 79. — No 11. — P. 2975 — 2976
  17. Breslow D.S. Bis-(cyclopentadienyl)-titanium dichloride —alkylaluminum complexes as catalysts for the polymerization of ethylene. /D.S. Breslow, N.R. Newburg // J. Am. Chem. Soc. 1957. — V. 79. — No 18. P. 5072 — 5073
  18. Dyachkovskiy F.S. The role of free ions in reactions of olefins with soluble complex catalysts. / F.S. Dyachkovskiy, A.K. Shilova, A.E. Shilov II J. Polym. Sci. C. 1967. -V. 16.-No 4.-P. 2333 -2339
  19. Pedeutour J.-N. Reactivity of Metallocene Catalysts for Olefin Polymerization: Influence of Activator Nature and Structure. / J.-N. Pedeutour, K. Radhakrishnan, H. Cramail, A. Deffieux // Macromol. Rapid Commun. 2001. — V. 22. — No 14. — P. 1095 — 1123
  20. Kissin Y.V. Alkene polymerization reactions with transition metal catalysts. / Y.V. Kissin // Amsterdam: Elsevier. 2008. — P. 253 — 270
  21. Alt I I.G. Effect of the nature of metallocene complexes of group IV metals on their performance in catalytic ethylene and propylene polymerization. / H.G. Alt, A. Koppl // Chem. Rev. -2000.-V. 100.-No 4.-P. 1205- 1221
  22. Chen E. Y.-X. Cocatalysts for Metal-Catalyzed Olefin Polymerization: Activators, Activation Processes, and Structure-Activity Relationships. / E. Y.-X. Chen, T.J. Marks // Chem. Rev. -2000.-V. 100.-No 4.-P. 1391 1434
  23. Metallocenes: Synthesis, Reactivity, Application. / Ed. A. Togni and R.L. Halterman. // New York: Wiley. 1998. — 832 P.
  24. A. Ostoja Starzewski in „Late Transition Metal Polymerization Catalysts“ Eds. B. Rieger et al. / Weinheim: Wiley VCH. — 2003. — 320 P.
  25. Kaminsky W. Olefin Polymerization with Highly-Active Soluble Zirconium Compounds Using Aluminoxane as Cocatalyst. / W. Kaminsky, K. Kulper, S.Nieboda. // Mab’omol. Chem. Macromol Symp. 1986. — V.3. — P.377 — 378 .
  26. Krentsel B.A. Polymers and Copolymers of Higher a-Olefins / B.A. Krentsel, Y.V. Kissin, V.I. Kleiner, S.S. Stotskaya //New York: Hanser Publishers. 1997. — Chapter l.-P. 1−20
  27. Atiqullah M. Synthesis of Functional Polyolefins using Metallocenes: A Comprehensive Review. / M. Atiqullah, M. Tinkl, R. Pfaender, M.N. Akhtar, I. Hussain // Polymer Reviews. 2010. — V. 50. — P. 178 — 230
  28. Wang B. Ansa-metallocene polymerization catalysts: Effects of the bridges on the catalytic activities. / B. Wang // Coord. Chem. Rev. 2006. — V. 250. — P. 242 — 258
  29. Prashar S. Insights into group 4 and 5 ansa-bis (cyclopentadienyl) complexes with a single-atom bridge. / S. Prashar, A. Antinolo, A. Otero // Coord. Chem. Rev. 2006. -V. 250.-P. 133−154
  30. Ewen J.A. Symmetry rules and reaction mechanisms of Ziegler-Natta catalysts. / J.A. Ewen // J. Mol. Catal. A. 1998. -V. 128. -No 1−3. -P. 103 — 109
  31. H.M. Направленный синтез стереоблочного полипропилена. Новые тенденции в создании эластомеров. / Н. М. Бравая, П. М. Недорезова, В. И. Цветкова // Усп. хгш. 2002. — Т. 71. -№ 1. — С. 57 — 80
  32. Kaminsky W. New application for metallocene catalysts in olefin polymerization. / W. Kaminsky, A. Funck, H. Hahnsen // Dalton Trans. 2009. — P. 8803 — 8810
  33. J.R. „Bound but Not Gagged“ Immobilizing Single-Site a-Olefin Polymerization Catalysts. / J.R. Severn, J.C. Chadwick, R. Duchatcau, N. Friederichs // Chem. Rev. 2005. — V. 105. — P. 4073 — 4147
  34. В.Т. Производство пластмасс на основе металлоценовых катализаторов / В. Т. Пономарева, Н. Н. Лихачева // Пластические массы. 2001. -№ 4. — С. 3 — 8.
  35. Ewart S.W. Olefin polymerization by pentamethylcyclopentadienyl trimethyltitanium, Cp*TiMe3. / S.W. Ewart, M.C. Baird // Topics Catal. 1999. — V. 7. -P. 1 — 8
  36. Zhang II. Living copolymerization of ethylene with styrene catalyzed by (cyclopentadienyl)(ketimide)titanium (IV) complex-MAO catalyst system: Effect of anionic ancillary donor ligand. / H. Zhang, K. Nomura // Macromolecules. 2006. — V. 39.-P. 5266−5274
  37. Rodrigues A.-S. Group 3 and 4 single-site catalysts for stereospecific polymerization of styrene. / A.-S. Rodrigues, E. Kirillov, J.-F. Carpentier // Coord. Chem. Rev. 2008. -V. 252.-No 18−20. — P. 2115−2136
  38. Po R. Synthesis of syndiotactic polystyrene: Reaction mechanisms and catalysis. / R. Po, N. Cardi // Prog. Polym. Sci. 1996. — V. 21. — No 1. — P. 47 — 88
  39. Braunschweig H. Constrained geometry complexes Synthesis and applications. / H. Braunschweig, F.M. Breitling // Coord. Chem. Rev. — 2006. — V. 250. — No 21−22. — P. 2691−2720
  40. A.B. Способ получения тетрациклопеитадиенила циркония / А. В. Медведева, Д. М. Рябенко, Р. Ф. Заярная, А. Е. Фриденберг АС СССР № 166 689 // Бюлл. Изобр. 1964. — № 23. — С. 22
  41. Advances in inorganic chemistry and radiochemistry V.13 // H.J. Emeleus, A.G. Sharpe Eds. London: Academic press. 1970. — P. 9 — 11.
  42. M.X. Химические превращения тетрациклопентадиенилциркония» / M.X. Миначева, Э. М. Брайнина // Изв. АН СССР, Сер. Хим. 1972. — № 1. — С. 139 — 143
  43. .В. Колебательные спектры и строение тетрациклопентадиенильных производных циркония и гафния / Б. В. Локшин, Э. М. Брайнина // Журн. структ. химии. -1971.-Т. 12.- № 6. -С. 1001 1006.
  44. В.И. Структура тетрациклопентадиенилциркония / В. И. Кулишов, Е. М. Брайнина, Н. Г. Бокий, Ю. Т. Стручков // Изв. АН СССР, Сер. Хгш. 1969. — № 11.-С. 2626
  45. Calderon J.L. Stereochemical^ nonrigid organometallic molecules. XXVII. Fluxional behavior oftetra (cyclopentadienyl)titanium. / J.L. Calderon, F.A. Cotton, J. Takats II J. Am. Chem. Soc. 1971. -V. 93. -No 15. — P. 3587 — 3591
  46. Sidgwick N.V. The Electronic Theory of Valence / N.V.Sidgwick // London-New York: Oxford University Press. 1927. — 213 P.
  47. Palmer E.J. Theoretical studies of 7i-loading and structural diversity in Cp3MX (M = Zr, Hf- X = H, CH3, OR, NR2) compounds. / E.J. Palmer, B.E. Bursten // Polyhedron. 2006. — V. 25. No 3. — P. 575 — 584
  48. Coevoct D. UY/visible spectroscopic study of the rac-Et (Ind)2ZrCl2/MAO olefin polymerization catalytic system, 1 Investigation in toluene. / D. Coevoet, H. Cramail, A. Deffieux // Macromol. Chem. Phys. — 1998. — V.199. — No 7. — P. 1451 — 1457
  49. Loukova G.V. The first experimental approach to probing frontier orbitals and HOMO-LUMO gap in bent metallocenes. / G.V. Loukova // Chem. Phys. Lett. 2002. V. 353.-P. 244−252
  50. Kopf J. Al, Zr-|j.-Hydrido-(Triethylalumino)-Tri (Cyclopentadienyl)Zirconium (IV)., C21H31AlZr. / J. Kopf, H.-J. Vollmer, W. Kaminsky // Cryst. Struct. Commun. 1980. -V. 9.-No 4.-P. 985 -990
  51. Brackemeyer T. Synthesis and structure of donor-ligand-stabilized tris (cycIopentadienyl)zirconium cations. / T. Brackemeyer, G. Erker, R. Frohlich // Organometallics. 1997. — V. 16. — No 4. — P. 531 — 536
  52. Lukens W.W. Synthesis, Structure, and Reactions of (r|5-C5H5)3Zr. / W.W. Lukens, R.A. Andersen // Organometallics. 1995. — V. 14. — No 7. — P. 3435 — 3439
  53. Calderazzo F. The tetracyclopentadienyls of titanium, zirconium and hafnium: new synthetic procedures and reactivity. / F. Calderazzo, U. Englcrt, G. Pampaloni, G. Tripepi. // Organomet. Chem. 1998. — V. 555. — No 1. — P. 49 — 56
  54. Ogata K. Homopolymerizations and random copolymerizations of olefins with amino-substituted cyclopentadienylchromium complexes. / K. Ogata, Y. Nakayama, H. Yasuda II J. Polym. Set A. 2002. — V. 40. — P. 2759 — 2771
  55. Zhang H. Synthesis and characterization of nitrogen-fiinctionalized cyclopentadienylchromium complexes and their use as catalysts for olefin polymerization. / H. Zhang, J. Ma, Y. Qian, J. Huang // Organometallics. 2004. — V. 23.-P. 5681 -5688
  56. Johnson L.K. New Pd (II)-Based and Ni (II)-Based Catalysts for Polymerization of Ethylene and Alpha-Olefins. / L.K. Johnson, C.M. Killian, M. Brookhart //./. Am. Chem. Soc.- 1995.-V. 117.-No 23.-P. 6414−6415
  57. Mecking S. Mechanistic studies of the palladium-catalyzed copolymerization of ethylene and alpha-olefins with methyl aery late. / S. Mecking, L.K. Johnson, L. Wang, M. Brookhart // J. Am. Chem. Soc. 1998. — V. 120. — P. 888 — 899
  58. C.C. Успехи в создании новых катализаторов полимеризации этилена и а-олефинов / С. С. Иванчев // Усп. хим. 2007. Т. 76. — № 7. — С. 669 — 690
  59. G.A. Luinstra, J. Quesser, В. Bildstein, Н.-Н. Gortz, С. Amort, М. Malaun, А. Krajete, G. Werne, M.O. Kristen, N. Huber, C. Gernert in Late Transition Metal Polymerization Catalysis Eds. B. Rieger et al./ Weinheim: Wiley-VCH. 2003. — P. 59 -99
  60. Ittel S.D. Late-metal catalysts for ethylene homo- and copolymerization. / S.D. Ittel, L.K. Johnson, M. Brookhart // Chem Rev. 2000. — V. 100. — P. 1169 — 1203
  61. Simon L.C. Kinetic investigation of ethylene polymerization catalyzed by nickel-diimine catalysts. / L.C. Simon, C.P. Williams, J.B.P. Soares, R.F. de Souza И J. Mol. Catal. A. 2001. — V. 165. — P. 55 — 66
  62. Small B.L. Polymerization of propylene by a new generation of iron catalysts: Mechanisms of chain initiation, propagation, and termination. / B.L. Small, M. Brookhart // Macromolecules. 1999. — V. 32. — No 7. — P. 2120−2130
  63. Britovsek G.J.P. Novel olefin polymerization catalysts based on iron and cobalt. / G.J.P. Britovsek, V.C. Gibson, S.J. McTavish, G.A. Solan, A.J. White, D.J. Williams, B.S. Kimberley, P.J. Maddox // Chem. Commun. 1998. — P. 849 — 850
  64. Gibson V.C. Advances in non-metallocene olefin polymerization catalysis. / V.C. Gibson, S.K. Spitzmcsser // Chem. Rev. 2003. — V. 103. — P. 283 — 315
  65. Chen E. Y.-X. Coordination Polymerization of Polar Vinyl Monomers by Single-Site Metal Catalysts. / E. Y.-X. Chen // Chem. Rev. 2009. — V. 109. — P. 5157 — 5214
  66. Химия привитых поверхностных соединений под ред. Г. В. Лисичкина. / Москва: Физматлит. 2003. — С. 481
  67. Matsui S. New bis (salicylaldiminato) titanium complexes for ethylene polymerization. / S. Matsui, Y. Tohi, M. Mitani, J. Saito, H. Makio, H. Tanaka, M. Nitabaru, T. Nakano, T. Fujita // Chem. Lett. 1999. — P. 1065 — 1066
  68. Matsui S. FI Catalysts: super active new ethylene polymerization catalysts. / S. Matsui, T. Fujita // Catal. Today. 2001. — V. 66. — P. 63 — 73
  69. Makio H. FI catalysts: A new family of high performance catalysts for olefin polymerization. / II. Makio, N. Kashiwa, T. Fujita // Adv. Synth. Catal. 2002. — V. 344. — P.477 — 493
  70. Domski G.J. Living alkene polymerization: New methods for the precision synthesis of polyolefms. / G.J.Domski, J.M.Rose, G.W.Coates, A.D.Boligand, M.Brookhart. // Prog.Polym.Sci. 2007. — V. 32. — P. 30 — 92
  71. К.П. Пост-металлоценовые катализаторы полимеризации олефинов / К. П. Брыляков // Yen. хим. 2007. — Т. 76. — № 3. — С. 279 — 304
  72. Bohm L.L. The ethylene polymerization with Ziegler catalysts: Fifty years after the discovery. / L.L. Bohm // Angew. Chem. Int. Ed. 2003. V. 42. — P. 5010 — 5030
  73. Bartke M. Polymer Particle Growth and Process Engineering Aspects / M. Bartke / in J.R. Severn, J.C. Chadwick (Eds.) Tailor-made Polymers // Weinheim: Wiley-VCH. -2008.-P. 79−94
  74. Kissin Y.V. Alkene polymerization reactions with transition metal catalysts. / Y.V. Kissin // Amsterdam: Elsevier. 2008. — P. 212 — 220
  75. Chu K.J. Effects of Diethyl Aluminum-Chloride (Deac) Addition to the Catalysts Prepared by Reduction of TiCl4 with EtMgCl on Ethylene-Propylene Copolymerization. / K.J. Chu, H.S. Chang, S.K. Ihm // Eur. Polym. J. 1994. — V. 30. — No 12. — P. 1467 -1472
  76. Blaya A. Catalysts for the polymerization and copolymerization of ethylene and polymerization processes using these catalysts / A. Blaya, P. Crouzet, S. Sandis, J.C. Bailly // US Patent 4 497 904, 1985
  77. Mink I.R. High activity catalyst prepared with alkoxysilanes / I.R. Mink, Т.Е. Nowlin // US Patent 6 291 384, 2001
  78. Jaber I. Dual reactor ethylene polymerization process / I. Jaber, S.J. Brown // Eur. Patent 1 124 864, 2003
  79. Hogan J.P. Polymers and production thereof / J.P. Hogan, R.L. Banks // US Patent 2 825 721, 1958
  80. Weckhuysen B.M. Surface chemistry and spectroscopy of chromium in inorganic oxides. / B.M. Weckhuysen, I.E. Wachs, R.A. Schoonheydt // Chem. Rev. 1996. — V. 96.-No 8.-P. 3327−3349
  81. Ilseih J.T. Catalyst composition for polymerizing alpha-olefms and alpha-olefins polymerization therewith / J.T. Hseih, J.C. Simondsen // US Patent 5 096 868, 1992
  82. Zakharov V.A. Supported Organometallic Catalysts for Olefin Polymerization. / V.A. Zakharov, Y.I. Yermakov // Catal. Rev. Sci. Eng. — 1979. — V. 19. — No 1. — P. 67 -103
  83. Cann K. Comparison of silyl chromate and chromium oxide based olefin polymerization catalysts. / K. Cann, M. Apecetche, M. Zhang // Macromol. Symp. -2004.-V. 213.-P. 29−36
  84. Carrick W.L. Ethylene polymerization with supported bis (triphenylsilyl) chromate catalysts. / W.L. Carrick, R.J. Trubbet, F.J. Karol, G.L. Karapinka, A.S. Fox, R.N. Johnson // J. Polym. Sci. A. 1972. — V. 10. — No 9. — P. 2609 — 2620
  85. B.A. Процессы формирования и состав активных центров катализаторов полимеризации олефинов / В. А. Захаров II Кинетика и катализ. -1980. Т. 21. -№ 4. С. 892−903
  86. Karol F.J. Chromocene catalysts for ethylene polymerization: Scope of the polymerization. / F.J. Karol, G.L. Karapinka, C. Wu, A.W. Dow, R.N. Johnson, W.L. Carrick // J. Polym. Sci. A. 1972. — V. 10. — P. 2621 — 2637
  87. Arean C.O. Ethylene Polymerization on Chromocene Supported on Gamma-Al203 -an FT-IR Investigation. / C.O. Arean, E.E. Platero, G. Spoto, A. Zecchina // J. Mol. CataL- 1989.-V. 56.-No 1−3.-P. 211 -219
  88. Krentsel B.A. Polymers and Copolymers of Higher a-Olefins / B.A. Krentsel, Y.V. Kissin, V.I. Kleiner, S.S. Stotskaya //New York: Ilanser Publishers. 1997. — Chapter 8.-P. 243 -326
  89. C.C. Катализаторы и прогресс технологии производства иолиолефинов / С. С. Иванчев // Катализ в промышленности. — 2002. — № 6. — С. 15 23
  90. А.Д. Катализ иммобилизованными комплексами. / А. Д. Помогайло //М.: Наука. 1991. — 446 С.
  91. Hsieh H.L. Recent Development on Transition-Metal Catalysts for Olefin Polymerizations / H.L.Hsieh. // Polymer J. 1980. — V. 12. — No 9. — P.597 — 602
  92. Hsieh H.L. Olefin Polymerization Catalysis Technology. / H.L.Hsieh. // CataL Rev.-Sci. Eng. 1984. — V.26. — No 3. — P.631 — 651 .
  93. Г. Б. Кристаллохимия / Г. Б. Бокий // Москва: Наука. 1971. — С. 57
  94. Collomb-Ceccarini J. Process for the polymerisation or copolymerisation of alpha-olefins in a fluidised bed, in the presence of a ziegler-natta catalyst system. / J. Collomb-Ceccarini, P. Crouzct// PCT Int. Appl. WO 8 600 314 A1. 1986
  95. Chien J.C.W. Polymerization of Olefins with Magnesium Chloride-Supported Catalysts / J.C.W.Chien // Advances in Polyolefins- R.B.Seymour, T.Cheng., Eds.- New York: Plenum Press. 1987. — P.255−282
  96. Soga K. Highly Active Chromium Catalysts for Ethylene Polymerisation / K. Soga, S. Chen et al. // Advances in Polyolefins- R.B.Seymour, T.Cheng., Eds.- New York: Plenum Press. 1987. — P. 143−152
  97. Karol F.J. Studies with High Activity Catalysts for Olefin Polymerization. / F.J.Karol H Catal.-Rev.-Sci.Eng. 1984. — V.26. — No 3. — P.557 — 595
  98. Meshkova I.N. Ethylene polymerization with catalysts on the base of Zr-cenes and methylaluminoxanes synthesized on zeolite support. / I.N. Meshkova, T.M. Ushakova,
  99. T.A. Ladygina, N.Yu. Kovaleva, L.A. Novokshonova I I Polymer Bulletin. 2000. — V. 44.-P. 461 -468
  100. Marks T.J. Surface-bound metal hydrocarbyls. Organometallic connections between heterogeneous and homogeneous catalysis. / T.J. Marks // Acc. Chem. Res. 1992. — V. 25. No 2.-P. 57−65
  101. Hamielec A.E. Polymerization reaction engineering Metallocene catalysts. / A.E. Hamielec, J.B.P. Soares // Prog. Polym. Science. — 1996. — V. 21. — P. 651 — 706
  102. Brookhart M. Carbon-hydrogen-transition metal bonds. / M. Brookhart- M.L.H. Green// J. Organomet. Chem. 1983. -V. 250. — No 1. — P. 395−408
  103. Chien J.C.W. Study of surface structures of submicron metal oxides by vanadium tetrachloride as a paramagnetic probe. / J.C.W. Chien // J. Am. Chem. Soc. 1971. — V. 93. No 19.-P. 4675−4684
  104. Chien J.C.W. Reduction of Ti (IV) alkyls in Cab O — Sil surfaces. / J.C.W. Chien // J. Catal. — 1971. -V. 23. — No 1. — P. 71 — 80 .
  105. Nowlin T.E. Ziegler-Natta Catalysts on Silica for Ethylene Polymerization. / T.E. Nowlin, R.I. Mink, F.Y. Lo and T. Kumar II J. Polym. Sci. Part A: Polym. Chem. -1991.-V. 29.-No 8.-P. 1167- 1173 .
  106. Yermakov Y.I. Catalysis by Supported Complexes / Y.I. Yermakov, B.N. Kuznetsov and V.A. Zakharov // Amsterdam: Elsevier. 1981. — P. 59 — 69.
  107. S.-K. Ihm, K.-J. Chu and J.-H. Yin, in: Catalyst Design for Tailor-made Polyolefins, K. Soga and M. Terano eds. // Tokyo: Kodansha. 1994. — P. 299 — 314
  108. Soga K. Alternating copolymerization of propylene oxide and carbon dioxide with an alumina supported diethylzinc catalyst. / K. Soga, K. Hyakkoku, K.T. Izumi, S. Ikeda // J. Polym. Sci., Polym. Chem. Ed. 1978. — V. 16. — No 9. — P. 2383 — 2392
  109. Kijenski J. Preface / J. Kijenski, A. Baiker // Catal. Today. 1989. — V. 5. — No 1. -P. IX
  110. Benesi H.A. Surface Acidity of Solid Catalysts. / H.A. Benesi, B.H.C. Winquist // Adv. Catal. 1978. — V. 27. — P. 97 — 182
  111. Kneozinger H. Catalytic Aluminas: Surface Models and Characterization of Surface Sites. / H. Kneozinger, P. Ratnasamy // Catal. Rev. Sci. Eng. 1978. — V. 17. — No I. -P. 31−70.
  112. P J.T. Tait, R. Ediate, in: Proceedings Metallocenes '97II Houston, TX. 1997. — P. 238−245
  113. Brintzinger H.H. Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts. / H.H. Brintzinger, D. Fischer, R. Mulhaupt // Angew. Chem. Int. Ed. Engl. -1995.-V.34.-No 11.-P.1143 1170
  114. Kaminsky W. New polymers by metallocene catalysis. / W. Kaminsky // Macromol.Chem.Phys. 1996. — V. 197. — No 12. — P. 3907 — 3945
  115. P.J.T. Tait, M.G.K. Monteiro, M. Yang, J.L. Richardson, in: Proceedings ' Metallocenes '96II Houston, TX. 1996. — P. 136 — 140
  116. Soga K. Polymerization of propene with the heterogeneous catalyst system EtIndH4.2ZrCl2/MA0/Si02 combined with trialkylaluminium. / K. Soga, M. Kaminaka // Macromol. Chem. Rapid Commun. 1992. — V. 13. No 4. — P. 221 — 224
  117. Pasynkiewicz S. Alumoxanes: Synthesis, structures, complexes and reactions. / S. Pasynkiewicz // Polyhedron. -1990. V. 9. — No 2−3. — P. 429 — 453
  118. Vandenberg E.J. Organometallic catalysts for polymerizing monosubstituted epoxides. / E.J. Vandenberg // J. Polym. Sei. 1960. — V. 47 — No 149. — P. 486 — 489
  119. Г. Б. Реакция алюминийтриалкилов с водой / Г. Б. Сахаровская, H.H. Корнеев, А. Ф. Попов, Е. И. Лариков, А. Ф. Жигач // Журн. общей химии. -1964.-Т. 34.-№ 10.-С. 3435−3438
  120. Kaminsky W. Process for the preparation of oligomeric aluminoxanes. / W. Kaminsky, H. Haehrisen // DE Patent 3 240 383,1982
  121. Kosinska W. The reactions of methoxyaluminium compounds with organoaluominium compounds. / W. Kosinska, A. Kunicki, M. Boleslawski, S. Pasynkiewicz II J. Organomet. Chem. 1978. — V. 161. — No 3. — P. 289 — 297
  122. Boleslawski M. Reaction of trimethylaluminium with lead monoxide. / M. Boleslawski, S. Pasynkiewicz // J. Organomet. Chem. 1972. — V. 43. — No 1. — P. 75 -80
  123. Charpentier P.A. Effect of aluminoxane on semi-batch polymerization of ethylene using zirconocene dichloride. / P.A. Charpentier, S. Zhu, A.E. Hamielec, M.A. Brook // Polymer. 1998. — V.39. — No 25. — P. 6501 — 6511
  124. Zakharov I.I. A density functional theory (DFT) quantum-chemical approach to the real structure of poly (methylaluminoxane). / I.I. Zakharov, V.A. Zakharov // Macromol. Theory Simul. 2001. — V. 10. — P. 108 — 116
  125. Babushkin D.E. Multinuclear NMR investigation of methylaluminoxane. / D.E. Babushkin, N.V. Semikolenova, V.N. Panchenko, A.P. Sobolev, V.A. Zakharov, E.P. Talsi II Macromol. Chem. Phys. 1997. — V. 198. — No 12. — P. 3845 — 3854
  126. Kaminsky W. Stereospecific polymerization by metallocene/aluminoxane catalysts. / W. Kaminsky, A. Bark, R. Steiger // J. Mol. Catal. 1992. — V. 74. — No 1 -3. — P. 109 -119
  127. Cam D. Concerning the Reaction of Zirconocene Dichloride and Methylalumoxane -Homogeneous Ziegler-Natta Catalytic-System for Olefin Polymerization. / D. Cam, U. Giannini // Makromol. Chem.- 1992.-V. 193.-No 5.-P. 1049- 1055
  128. Chien J.C.W. Metallocene-methylaluminoxane catalysts for olefin polymerization. I. Trimethylaluminum as coactivator. / J.C.W. Chien, B.-P. Wang // J. Polym. Sci. Part A, Polym. Chem. —1988. — V. 26.-No 11.-P. 3089−3102
  129. Jia L. Protected (Fluoroaryl)borates as Effective Counteranions for Cationic Metallocene Polymerization Catalysts. / L. Jia, X. Yang, A. Ishihara, T.J. Marks // Organometallics. 1995. -V. 14. — No 7. — P. 3135−3137
  130. Arlman E.J. Ziegler-Natta catalysis III Stereospecific polymerization of propene with the catalyst system TiCl3-AlEt3 / E.J. Arlman- P. Cossee // J. Catal. 1964. — V. 3. — No l.-P. 99−104
  131. Yu Z. Molecular mechanics study of zirconocenium catalyzed isospecific polymerization of propylene. / Z. Yu, J.C.W. Chien // J. Polym. Sci. A. 1995. — V. 33. -No l.-P. 125−135
  132. Grubbs R.H. Handbook of Metathesis. Vol. 3 / R.H. Grubbs // Weinheim: Wiley-VCH.-2003.-442 P.
  133. Ivin K.J. Mechanism for the stereospecific polymerization of olefins by Ziegler-Natta catalysts. / K.J. Ivin, J.J. Rooney, C.D. Stewart, M.L.H. Green, R. Mahtab II J. Chem. Soc., Chem. Comm. 1978. — No 14. — P. 604 — 606
  134. Weiss H. Ethylene insertion in the homogeneous Ziegler-Natta catalysis: an ab initio investigation on a correlated level. / H. Weiss, M. Ehrig, R. Ahlrichs // J. Am. Chem. Soc. 1994. — V. 116.-No 11.-P. 4919−4928
  135. Friedlander H.N. Organometallics in Ethylene Polymerization. / H.N. Friedlander, К. Oita // Ind. Eng. Chem. 1957. — V. 49. — No 11. — P. 1885 — 1890
  136. Nenitzescu C.D. Uber die Normaldruck-Polymerisierung des Athylens durch Zink-und Natrium-Alkyle. / C.D. Nenitzescu, C. Huch, A. Huch // Angew. Chem. 1956. — V. 68.-No 13.-P. 438−438
  137. A.B. Металлоорганические комплексные соединения — катализаторы полимеризации олефинов / A.B. Топчиев, Б. А. Кренцель, JI.JT. Стоцкая // Усп. хим.- 1961. Т. 30. № 4. — С. 462 — 492
  138. Davidson P.J. Metal a-hydrocarbyls, MRn. Stoichiometry, structures, stabilities, and thermal decomposition pathways. / P.J. Davidson, M.F. Lappert, R. Pearce // Chem. Rev.1976. — V. 76.-No2.-P. 219−242
  139. Хенриси-Оливе Г. Координация и катализ / Г. Хенриси-Оливе, С. Оливе // Москва: Мир. 1980. — 421 С.
  140. Н.М. Механизм и кинетика полимеризации олефинов на комплексных катализаторах / Н. М. Чирков // Кинетика и катализ. 1970. — Т. 11. — № 2. — С.321 -332
  141. П.Е. Радикальные стадии в реакциях комплексных металлоорганических и металлоценовьтх катализаторов и их роль в полимеризации / П. Е. Матковский // РИО ИПХФ РАН: Черноголовка. 2003. — 152 С.
  142. Volkis V. Unusual Synergetic Effcct of Cocatalysts in the Polymerization of Propylene by a Zirconium Bis (benzamidinate) Dimethyl Complex. / V. Volkis, B. Tumanskii, M.S. Eisen // Organometallies. 2006. — V. 25. — No 11. — P. 2722 — 2724
  143. Clark T. Radical addition to alkene-metal cation complexes. / T. Clark // J. Chem. Soc., Chem. Commun. 1986. — No 24. — P. 1774 — 1776
  144. Horn A.H.C. Does Metal Ion Complexation Make Radical Clocks Run Fast? / A.H.C. Horn, T. Clark // J. Am. Chem. Soc. 2003. — V. 125. — No 9. — P. 2809 — 2816
  145. Vyakaranam K. Li±Catalyzed Radical Polymerization of Simple Terminal Alkenes. / K. Vyakaranam, J.B. Barbour, J. Michl // J. Am. Chem. Soc. 2006. — V. 128. — No 17. -P. 5610−5611
  146. Jin J. Monoalkyl, chiral-at-metal 'constrained geometry' complexes as efficient a-olefin and methyl methacrylate polymerisation catalysts. / J. Jin, D.R. Wilson, E.Y.X. Chen // Chem. Commun. 2002. — No 7. — P. 708 — 709
  147. Wang C. The amido-bridged zirconocene’s reactivity and catalytic behavior for ethylene polymerization. / C. Wang, M. van Meurs, L.P. Stubbs, B.Y. Tay, X.J. Tan, S. Aitipamula, J. Chacko, H.K. Luo, P.K. Wang, S. Ye // Dalton Trans. 2010. — P. 807 -814
  148. Kissin Y.V. Alkene polymerization reactions with transition metal catalysts. / Y.V. Kissin // Amsterdam: Elsevier. 2008. — P. 86 — 203
  149. Kissin Y.V. Alkene polymerization reactions with transition metal catalysts. / Y.V. Kissin // Amsterdam: Elsevier. 2008. — P. 138
  150. Rappe A.K. Modeling Metal-Catalyzed Olefin Polymerization. / A.K. Rappe, W.M. Skiff, C.J. Cascwit // Chem. Rev. 2000. — V. 100. — No 4. — P. 1435 — 1456
  151. Arriola D.J. Catalytic production of olefin block copolymers via chain shuttling polymerization. / D.J. Arriola, E.M. Carnahan, P.D. Hustad, R.L. Kuhlman, T.T. Wenzel // Science. 2006. — V. 312. — P. 714 — 719
  152. Natta G. The kinetics of the stereospecific polymerization of a-olefins / G. Natta, I. Pasquon // Advances in catalysis. — 1959. V. 11. — P. 1−67
  153. H.M. Формирование и каталитические свойства металлоценовых систем с комбинированным сокатализатором А1(ьВи)з/перфторфенилборат / Н. М. Бравая, Н. Е. Хрущ, О. Н. Бабкина, А. Н. Панин // Рос. хим. э/сурн. 2001. — Т. 45. — № 4. — С. 56−67
  154. Song F. Zirconocene-Catalyzed Propene Polymerization: A Quenched-Flow Kinetic Study. / F. Song, R.D. Cannon, M. Bochmann // J. Am. Chem. Soc. 2003. — V. 125. — P. 7641 -7653.
  155. Jiang S. New kinetic model of ethene polymerization with Cp2ZrCl2/MAO catalyst. / S. Jiang, L. Wang, P. Zhang, L. Feng // Macromol. Theory Simul. 2002. — V. 11. — P. 77−83.
  156. Peacock A.J. Handbook of polyethylene / A.J. Peacock II New-York: Marcel Dekker. -2000.-534 P.
  157. Cho H.S. Characteristics of ethylene polymerization over Ziegler-Natta/metallocene catalysts Comparison between hybrid and mixed catalysts. /H.S. Cho, Y.H. Choi, W.Y. Lee. // Catal. Today. — 2000 — V. 63. — P. 523 — 530.
  158. Margues M.F.W. Binary metallocene supported catalyst for propylene polymerization. / M.F.W. Margues, C.C. Pombo, R.A. Silva, A. Conte. // Eur. Polymer J. 2003. — V. 39. — P. 561 — 567.
  159. Wang Y.J. Investigation on chain structure of LLDPE obtained by ethylene in-situ copolymerization with DSC and XRD. / Y.J. Wang, W.D. Yan. // Chinese Science Bulletin. 2007. — V. 52. — P. 736 — 742.
  160. Vasile C. Practical Guide to Polyethylene / C. Vasile, M. Pascu // Shawbury: Rapra technology. 2005. — P 125 — 358
  161. Beach D.L. Dual functional catalysis for ethylene polymerization to branched polyethylene. I. Evaluation of catalytic systems. / D.L. Beach, Yu.V. Kissin. // J. Polym. Sci.: Polym. Chem. 1984. — V. 22. — No 11. — P. 3027 — 3042
  162. Wasilke J.-C. Concurrent Tandem Catalysis. / J.-C. Wasilke, S.J. Obrey, R.T. Baker, G.C. Bazan. И Chem. Rev. 2005. — V. 105.-No 3.-P. 1001 — 1020
  163. Komon Z.L.A. Synthesis of branched polyethylene by tandem catalysis. / Z.L.A. Komon, G.C. Bazan // Macromol. Rapid Commun. 2001. — V. 22. — No. 7. — P. 467 -478.
  164. Armarego W.L.E. Purification of laboratory chemicals / W.L.E. Armarego, C.L.L. Chai // Amsterdam: Elsevier. 2003. — 675 P.
  165. А.П. Получение циклопентадиенидов калия и натрия взаимодействием циклопентадиена со щелочами / А. П. Борисов, В. Д. Махаев // Металлоорганическая химия. 1989. — Т. 2. — № 3. — С. 680 — 681
  166. Nowlin Т.Е. High activity Ziegler-Natta catalysts for the preparation of ethylene copolymers. / Т.Е. Nowlin, Y.V. Kissin, K. P Wagner // J. Polym. Sci. Part A: Polym. Chem. 1988. -V. 26.-No 3,-P. 755 -764 .
  167. Molecular characterization and analysis of polymers Eds. J.M. Chalmers, R.J. Meier // Amsterdam: Elsevier. 2008. — 754 P.
  168. Flory P.J. Melting Points of Linear-Chain Homologs. The Normal Paraffin Hydrocarbons. / P.J. Flory, A. Vrij // J. Am. Chem. Soc. 1963. — V. 85. — No 22. — P. 3548−3553
  169. Sahgal A. Solubility of ethylene in several polar and non-polar solvents. / A. Sahgal, H.M. La, W. Hayduk // Canad. J. Chem. Eng. -1978. V. 56. — No 3. — P. 354 — 357
  170. П.Е. Полимеризация этилена под действием системы (C5H5)2TiCl2-(С2Н5)2А1С1 в условиях классического металлоценового катализа / П.Е.
  171. , JI.H. Руссиян, В.Д. Махаев, Ahn Ki Lee, Во Geung Song I I Высокомолек. coed. сер. A. 1998. — T. 40. — № 9. — C. 1413 — 1415
  172. Т.П. Растворимость этилена в гексане, циклогексане и бензоле под давлением / Т. П. Жузе, А. С. Журба // Изв. АН СССР. 1960. — № 2. — С.364 — 366
  173. Shiraki Y. ZrCl4-TEA-EASC three-component catalyst for the oligomerization of ethylene: the role of organoaluminum co-catalysts and additives. / Y. Shiraki, Y. Nakamoto, Y. Souma // J. Mol. Catal. A. 2002. — V. 187. — P. 283 — 294.
  174. Eisch J.J. Role of Ion-Pair Equilibria in Homogeneous Ziegler-Natta Olefin Polymerization Catalysis. / J.J. Eisch, S.I. Pombrik, G.X. Zheng // Macromol. Symp. 1993.-V. 66.-P. 109−120
  175. Mazzolini J. Catalyzed chain growth (CCG) on a main group metal: an efficient tool to fimctionaiize polyethylene. / J. Mazzolini, E. Espinosa, F. D’Agosto, C. Boisson // Polym. Chem. 2010. — V. 1. — No 6. — P. 793 — 800
  176. Long L.H. Dissociation energies of metal-carbon bonds and the excitation energies of metal atoms in combination / L.H. Long // Pure Appl. Chem. 1961. — V. 2. — No 1 -2. -P. 61 -70 .
  177. CRC Handbook of Chemistry and Physics / Ed. by D.R. Lide. Boca Raton: Taylor and Francis. 2007. — 850 P.
  178. Long L.H. The Strengths of Certain Covalent Metal Bonds / L.H. Long, R.G.W. Norrish//Phil. Trans. Roy. Soc. A. 1949. -V. 241. -No 838. -P. 587 — 617 .
  179. Bochmann M. Monomer-Dimer Equilibria in Homodinuclear and Heterodinuclear Cationic Alkylzirconium Complexes and Their Role in Polymerization Catalysis. / M. Bochmann, S.J. Lancaster // Angew. Chem. Int. Ed. 1994. — V. 33. — P. 1634 — 1637.
  180. Briain N.N. Polymeryl exchange between ansa-zirconocene catalysts for norbornene-ethene copolymerization and aluminum or zinc alkyls. / N.N. Briain, H.-H. Brintzinger, D. Ruchatz, G. Fink // Macromolecules. 2005. — V. 38. — No 6. — P. 2056 — 2063
  181. Г. А. Толстяков Алюминийорганические соединения в органическом синтезе / Г. А. Толстиков, У. М. Джемилев, А. Г. Толстиков // Новосибирск: Гео. 2009. — С. 11
  182. Г. А. Толстиков Алюминийорганические соединения в органическом синтезе / Г. А. Толстиков, У. М. Джемилев, А. Г. Толстиков // Новосибирск: Гео. 2009. — С. 86
  183. Smit М. Effect of 1-hexene comonomer on polyethylene particle growth and copolymer chemical composition distribution. / M. Smit, X. Zheng, R. Brull, J. Loos, J.C. Chadwick // J. Polym. Sci. A: Polym. Chem. 2006. — V. 44. — P. 2883 — 2890.
  184. Kim J.D. Copolymerization of ethylene and 1-hexene with supported metallocene catalysts: Effect of support treatment. / J.D. Kim, J.B.P. Soares // Macromol. Rapid Commun. 1999. — V. 20. — No 6. P. 347 — 350
  185. Przbyla C. Ethylene/hexene copolymerization with the heterogeneous catalyst system Si02/MAO/rac-Me2Si2-Me-4-Ph-Ind.2ZrCl2: The filter effect. / C. Przbyla, B. Tesche, G. Fink // Macromol. Rapid Commun. 1999. — V. 20. — No 6. — P. 328 — 332
  186. Soga K. Effect of monomer diffusion in the polymerization of olefins over Ziegler-Natta catalysts. / K. Soga, H. Yanagihara, P. Lee // Makromol. Chem. 1989.— V. 190. -No 5. — P.995 — 1006 .
  187. Ushakova T.M. Random and block copolymerization of ethylene and a-olefins with Ziegler-Natta catalysts / T.M. Ushakova, N.M. Gultseva, I.N. Meshkova, Ju.A. Gavrilov // Polimery. 1994. -V. 39. — No 10. — P. 102 — 109.
  188. Fink G. Propane polymerization with silica-supportcd metallocene/MAO catalysts. / G. Fink, B. Stenmetz, J. Zechlin, C. Przybyla, B. Tesche // Chem. Rev. 2000. — V. 100. -P. 1377- 1390. •
  189. Bochmann М. The use of spectroscopy in metallocene-based polymerisation catalysis / M. Bochmann // in Mechanisms in Homogeneous Catalysis. A Spectroscopic Approach. Ed. B. Heaton, Weinheim: Wiley-VCH. 2005. — P. 311 — 357
  190. Pedeutor J.-N. Elementary mechanisms of metallocene activation by methylaluminoxane cocatalysts for olefin polymerization. / J.-N. Pedeutor, K. Radhakrishnan, H. Cramail, A. Deffieux // Polym. Int. 2002. — V. 51. — P. 973 — 977.
  191. Э.А. Строение и спектральные свойства аддуктов, образующихся в системе гас-Е1(Ь^^гС12-полиметилалюмоксан / Э. А. Фушман, С. С. Лалаяи, Л. Ю. Устынюк, А. Д. Марголин // Высокомолек. Соед. сер. А. 2005. — Т. 47. — № 1. — С. 5−21
  192. Eilersten J.L. Activation of Metallocenes for Olefin Polymerization As Monitored by IR Spectroscopy. / J.L. Eilersten, J.A. Stovneng, M. Ystenes, E. Rytter // Inorg. Chem. -2005. V. 44. — No 13. — P. 4843 — 4851
  193. Lauher J.W. Structure and chemistry of bis (cyclopentadienyl)-MLn complexes. / J.W. Lauher, R. Hoffman // J.Am. Chem. Soc. 1976. — V. 89. — No 7. — P. 1729 — 1742
  194. Tritto I. Dimethylzirconocene-methylaluminoxane catalyst for olefin polymerization: NMR study of reaction equilibria. /1. Tritto, R. Donetti, M.C. Sacchi, P. Locatelli, G. Zannoni // Macromolecules. 1997. — V. 30. — P. 1247 — 1252.
  195. Е.П. Ключевые интермедиаты металлоценовой и постметаллоценовой полимеризации / Е. П. Талзи, К. П. Брыляков, Н. В. Семиколенова, В. А. Захаров, М. Бохман // Кинетика и катализ. 2007. — Т. 48. — № 4. — С. 521 — 536
  196. Heins V.E. Beispiele fur die kondensation von metallalkylen unter alkanabspaltung. / V.E. Fleins, H. Hinck, W. Kaminsky, G. Oppermann, P. Raulinat, H. Sinn // Makromol. Chem.- 1970.-V. 134.-No l.-P. 1 -22
  197. Cam D. Reduction of bis (ri5-cyclopentadienyl)zirconium dichloride in the presence of methylalumoxane. / D. Cam, F. Sartori, A. Maldotti // Macromol. Chem. Phys. -1994.-V. 195.-No 8.-P. 2817−2826
  198. Bruce M.R.M. Electronic structures of the (t|5-C5H5)2TiL2 complexes (L = iluorine, chlorine, bromine, iodine, and methyl). / M.R.M. Bruce, A. Kenter, D.R. Tyler // J. Am. Chem. Soc. 1984: — V. 106. — P. 639 — 644.
  199. Kcnney J.W. Electronic luminescence spectra of charge transfer states of titanium (IV) metalloccnes. / J.W. Kenncy, D.R. Boone, D.R. Striplin, Y.H. Chen, K.B. Hamar // Organometallics. 1993. — V. 12. — P. 3671 — 3676.
  200. E. E.-X. Chen «Double Activation» of Constrained Geometry and ansa-Metallocene
  201. Group 4 Metal Dialkyls: Synthesis, Structure, and Olefin Polymerization Study of
  202. Mono- and Dicationic Aluminate Complexes. / E. Y.-X. Chen, W.J. Kruper, G. Roof, D.R. Wilson // J. Am. Chem. Soc. 2001. — V. 123. — P. 745 — 746.
  203. J.L. Eilersten, J.A. Stovneng, M. Ystenes, E. Rytter // Future Technology for Polyolefin and Olefin Polymerization / Ed. By M. Terano, T. Shiono. Tokyo: Technol. Ed. Publ. 2002. — P. 111
  204. Henrici-Olive G. Koordinative Polymerisation an loslichen UbergangsmetallKatalysatoren. / G. Henrici-Olive, S. Olive // Adv. Polym. Sei. 1969. — V. 6. — P. 421 -472
  205. Mach K. Electron spin resonance spectra of methyl-substituted titanocene (III) halides. / K. Mach, J.B. Raynor // J. Chem. Soc. Dalton Trans. 1992. — P. 683 — 688.
  206. Tebbe F. Olefin homologation with titanium methylene compounds. / F. Tebbe, G. Parshall, G. Reddy II J.Am. Chem. Soc.- 1978.-V. 100.-No 11. P. 3611 — 3613
  207. Tebbe F. Titanium-catalyzed olefin metathesis. / F. Tebbe, G. Parshall, D. Ovenall // J.Am. Chem. Soc. 1979. — V. 101. — No 17. — P. 5074−5075
  208. Hagihara H. Polymerization of olefins by Tebbe-type Ti (III) complex/methylaluminoxane catalyst. / H. Hagihara, K. Tsuchihara, K. Takeuchi, M. Murata, H. Ozaki // Kobunshi Ronbunshu. 2002. — V. 59. — P. 250 — 252.
  209. П.Е. Разветвлено-цепной механизм распада метальных производных переходных металлов / П. Е. Матковский // Кинетика и катализ. -1997. Т. 38. — № 2. — С. 186- 1969
Заполнить форму текущей работой